Бизнесу место

Бизнесу место

» » Планирование экспериментальных исследований. Виды опросных методов

Планирование экспериментальных исследований. Виды опросных методов

Планирование эксперимента (англ. experimental design techniques) -- комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента -- достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др.

Планирование эксперимента возникло в 50-х годах XX века из потребности устранить или хотя бы уменьшить систематические ошибки в сельскохозяйственных исследованиях путем рандомизации условий проведения эксперимента. Процедура планирования оказалась направленной не только на уменьшение дисперсии оцениваемых параметров, но также и на рандомизацию относительно сопутствующих, спонтанно изменяющихся и неконтролируемых переменных. В результате удалось избавиться от смещения в оценках. Исследования Р. Фишера знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йетс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью факторного эксперимента является необходимость ставить сразу большое число опытов. Развитие теории планирование эксперимента в СССР отражено в работах В. В. Налимова, Ю. П. Адлера, Ю. В. Грановского, Е. В. Марковой, В. Б. Тихомирова.

Методы планирования эксперимента позволяют минимизировать число необходимых испытаний, установить рациональный порядок и условия проведения исследований в зависимости от их вида и требуемой точности результатов. Если же по каким-либо причинам число испытаний уже ограничено, то методы дают оценку точности, с которой в этом случае будут получены результаты. Методы учитывают случайный характер рассеяния свойств испытываемых объектов и характеристик используемого оборудования. Они базируются на методах теории вероятности и математической статистики.

Планирование эксперимента включает ряд этапов.

  • 1. Установление цели эксперимента (определение характеристик, свойств и т. п.) и его вида (определительные, контрольные, сравнительные, исследовательские).
  • 2. Уточнение условий проведения эксперимента (имеющееся или доступное оборудование, сроки работ, финансовые ресурсы, численность и кадровый состав работников и т. п.). Выбор вида испытаний (нормальные, ускоренные, сокращенные в условиях лаборатории, на стенде, полигонные, натурные или эксплуатационные).
  • 3. Выявление и выбор входных и выходных параметров на основе сбора и анализа предварительной (априорной) информации. Входные параметры (факторы) могут быть детерминированными, то есть регистрируемыми и управляемыми (зависимыми от наблюдателя), и случайными, то есть регистрируемыми, но неуправляемыми. Наряду с ними на состояние исследуемого объекта могут оказывать влияние нерегистрируемые и неуправляемые параметры, которые вносят систематическую или случайную погрешность в результаты измерений. Это -- ошибки измерительного оборудования, изменение свойств исследуемого объекта в период эксперимента, например, из-за старения материала или его износа, воздействие персонала и т. д.
  • 4. Установление потребной точности результатов измерений (выходных параметров), области возможного изменения входных параметров, уточнение видов воздействий. Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам.

На назначение степени точности влияют условия изготовления и эксплуатации объекта, при создании которого будут использоваться эти экспериментальные данные. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности.

Точность экспериментальных данных также существенно зависит от объёма (числа) испытаний -- чем испытаний больше, тем (при тех же условиях) выше достоверность результатов. Для ряда случаев (при небольшом числе факторов и известном законе их распределения) можно заранее рассчитать минимально необходимое число испытаний, проведение которых позволит получить результаты с требуемой точностью.

5. Составление плана и проведение эксперимента -- количество и порядок испытаний, способ сбора, хранения и документирования данных.

Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения. Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела выносливости.

В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики.

Порядок испытаний также важен в процессе поисковых исследований: в зависимости от выбранной последовательности действий при экспериментальном поиске оптимального соотношения параметров объекта или какого-то процесса может потребоваться больше или меньше опытов. Эти экспериментальные задачи подобны математическим задачам численного поиска оптимальных решений. Наиболее хорошо разработаны методы одномерного поиска (однофакторные однокритериальные задачи), такие как метод Фибоначчи, метод золотого сечения.

6. Статистическая обработка результатов эксперимента, построение математической модели поведения исследуемых характеристик.

Необходимость обработки вызвана тем, что выборочный анализ отдельных данных, вне связи с остальными результатами, или же некорректная их обработка могут не только снизить ценность практических рекомендаций, но и привести к ошибочным выводам. Обработка результатов включает:

  • · определение доверительного интервала среднего значения и дисперсии (или среднего квадратичного отклонения) величин выходных параметров (экспериментальных данных) для заданной статистической надежности;
  • · проверка на отсутствие ошибочных значений (выбросов), с целью исключения сомнительных результатов из дальнейшего анализа. Проводится на соответствие одному из специальных критериев, выбор которого зависит от закона распределения случайной величины и вида выброса;
  • · проверка соответствия опытных данных ранее априорно введенному закону распределения. В зависимости от этого подтверждаются выбранный план эксперимента и методы обработки результатов, уточняется выбор математической модели.

Построение математической модели выполняется в случаях, когда должны быть получены количественные характеристики взаимосвязанных входных и выходных исследуемых параметров. Это -- задачи аппроксимации, то есть выбора математической зависимости, наилучшим образом соответствующей экспериментальным данным. Для этих целей применяют регрессионные модели, которые основаны на разложении искомой функции в ряд с удержанием одного (линейная зависимость, линия регрессии) или нескольких (нелинейные зависимости) членов разложения (ряды Фурье, Тейлора). Одним из методов подбора линии регрессии является широко распространенный метод наименьших квадратов. Для оценки степени взаимосвязанности факторов или выходных параметров проводят корреляционный анализ результатов испытаний. В качестве меры взаимосвязанности используют коэффициент корреляции: для независимых или нелинейно зависимых случайных величин он равен или близок к нулю, а его близость к единице свидетельствует о полной взаимосвязанности величин и наличии между ними линейной зависимости.

При обработке или использовании экспериментальных данных, представленных в табличном виде, возникает потребность получения промежуточных значений. Для этого применяют методы линейной и нелинейной (полиноминальной) интерполяции (определение промежуточных значений) и экстраполяции (определение значений, лежащих вне интервала изменения данных).

7. Объяснение полученных результатов и формулирование рекомендаций по их использованию, уточнению методики проведения эксперимента.

Снижение трудоемкости и сокращение сроков испытаний достигается применением автоматизированных экспериментальных комплексов. Такой комплекс включает испытательные стенды с автоматизированной установкой режимов (позволяет имитировать реальные режимы работы), автоматически обрабатывает результаты, ведет статистический анализ и документирует исследования. Но велика и ответственность инженера в этих исследованиях: четкое поставленные цели испытаний и правильно принятое решение позволяют точно найти слабое место изделия, сократить затраты на доводку и итерационность процесса проектирования.

Прежде чем перейти к описанию конкретных используемых в психологии планов, перечислим принципы, на которые опирается построение экспериментальных схем.

  • 1. Эксперимент возможен только в том случае, если имеется более чем одно условие НП. Вывод о результате действия НП основывается на сравнении показателей ЗП в отличающихся друг от друга условиях («контрольном» и «экспериментальном», «активном» и «пассивном» или в нескольких отличающихся по заданному критерию условиях).
  • 2. Фиксация и измерение переменных осуществляются в классификации шкал, предложенной Стивенсом: наименований, порядка, интервалов и отношений. Вид переменной (учебные классы, градации яркости светового пятна и т.д.) не задает, однако, способа ее измерения (на качественных или количественных уровнях). Обычно «количественным» экспериментом называют такой, где именно НП измерена количественно.
  • 3. Эксперимент возможен только в случае функционального контроля уровней НП. Это может быть изменение характеристик физических стимулов, управление условиями (и ситуациями) или контроль путем подбора состава групп. В эксперименте обычно используются стратегии уравнивания групп, и испытуемые эквивалентных групп попадают в разные экспериментальные условия. Обеспечение неравенства групп как способа задания НП (пол, возраст, личностные свойства и т.п.) принимает форму квазиэксперимента, или эксперимента с ограничениями форм контроля. Если изменения НП не зависят от исследователя, а берутся «готовыми» (например, как результаты психодиагностики), то у исследователя не может быть уверенности в том, что именно выбранная НП определила показатели ЗП.
  • 4. Факторные (мультивариативные) эксперименты, включающие управление более чем одной НП, строятся как комбинации, повторы (репликации) и другие видоизменения исходных планов с одной НП. Статистические приемы обработки данных могут при этом как предполагать, так и исключать взаимодействия между отдельными переменными.
  • 5. Вводимое экспериментальное воздействие выступает в планах, или схемах, в качестве НП даже в том случае, когда испытуемые не воспринимают разницы условий. Часто только после эксперимента делается вывод, можно ли осуществленную манипуляцию условиями рассматривать как «воздействие» или функциональный контроль НП не имеет результатом действие этой переменной.

Планирование эксперимента – это область математической статистики, ставящая своей целью выбор количества и условий постановки экспериментов, необходимых и достаточных для решения задачи с требуемой точностью, разработку методов и приемов математической обработки результатов эксперимента и принятия на основе этого определенных решений.

Что дает планирование экспериментатору? Принципиально иное отношение к ошибке. Рандомизация. Последовательный эксперимент. Оптимальное использование пространства независимых переменных. Редукция информации. Этическая функция планирования эксперимента. Планирование эксперимента и логика вопросов.

Какова стратегия эксперимента? 1. Признание факта существования задачи и ее формулировка. 2. Выбор факторов и уровней. 3. Выбор переменной отклика. 4. Выбор плана эксперимента. 5. Проведение эксперимента. 6. Анализ данных. 7. Выводы и рекомендации.

Аналогия между вычислительным и лабораторным экспериментами. Лабораторный эксперимент Образец Вычислительный эксперимент Модель Прибор Измерение Программа для компьютера Тестирование программы Расчет Анализ данных Калибровка

ПЕРВИЧНАЯ СТАТИСТИЧЕСКАЯ ОБРАБОТКА ОПЫТНЫХ ДАННЫХ Средняя арифметическая Ma= y/m=(y 1+y 2+. . . +yi+. . . +ym)/m Средняя геометрическая Mg=(yi)1/m=(y 1 y 2. . . yi. . . ym)1/m Средняя квадратическая Ms=(yi 2/m)1/2=((y 12+y 22+. . . +yi 2+. . . +ym 2)/m)1/2 Средняя гармоническая Mgr=m(yi– 1)– 1 Мода Медиана Md=y(m+1)/2 Md=(ym/2+1)/2

Дисперсия воспроизводимости Sj 2= (yij-yсрj)2/(m-1)= =((y 1 j-yсрj)2+(y 2 j-yсрj)2+. . . +(ymj-yсрj)2)/(m-1) Среднее квадратическое отклонение Sj=(Sj 2)1/2=((Yij-Yсрj)2/(m-1))1/2 Коэффициент вариации V=Sj/Yсрj · 100% Размах R=Ymaxj – Yminj Доверительный интервал для среднего B = yсрj t Sj/((m)1/2)

Количество повторных измерений m=(V 2) (t 2)/(T 2) Коэффициент вариации (V, %), Показатель точности (относительная ошибка T, обычно 5%), Показатель достоверности (t – критерий Стьюдента). m=(V 2) (t 2) (1 1/(2 m 1)1/2)2/(T 2) Нижний и верхний пределы для дисперсии =m– 1; =95%; =5%

Исключение грубых промахов По критерию Романовского |ym+1 –yср| t" Sy По критерию Q Q=|ym-ym-1|/|ym-y 1| Проверка однородности дисперсий F=S 21/S 22 – критерий Фишера; G – критерий Кохрена B/C – критерий Бартлетта (по χ2)

Проверка различия средних значений большая выборка малая выборка Сравнение нескольких средних с использованием критерия Дункана Производится ранжирование средних. Вычисляется значение дисперсии воспроизводимости с числом степеней свободы =n (m– 1).

Вычисляется нормированная ошибка среднего S=(Sa 2/m)0. 5 Выписываются значения (n– 1) значимых рангов из таблицы Дункана при числе степеней свободы, уровне значимости и p=2, 3, …, n. Наименьшие значимые ранги (НЗР), вычисляются как произведение рангов на нормированную ошибку среднего S. Проверяются разности между средними, начиная с крайних; эта разность сравнивается с НЗР при p=n, затем находится разность максимального среднего и первого, которое превосходит минимальное, и сравнивается с НЗР при p=n– 1 и т. д.

ВЫБОР ПАРАМЕТРОВ ОПТИМИЗАЦИИ И ФАКТОРОВ Требования к отклику: 1. Отклик (параметр оптимизации) должен быть эффективным с точки зрения достижения цели. 2. Отклик должен быть универсальным, т. е. всесторонне отражать свойства процесса. 3. Отклик должен быть количественным и выражаться одним числом. 4. Отклик должен быть статистически эффективным, т. е. иметь небольшую дисперсию. 5. Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требования к факторам: 1. Факторы должны быть управляемыми, т. е. такими, чтобы внутри области определения фактору можно было бы придать любое значение. 2. Факторы должны быть совместимы. Это означает, что любая комбинация уровней внутри областей определения может быть реализована. Факторы несовместимы, если некоторые комбинации уровней приводят к остановке процесса (например, в результате взрыва и т. п.). 3. Точность установления уровней факторов должна быть выше точности фиксирования значений параметра оптимизации.

ВЫДЕЛЕНИЕ СУЩЕСТВЕННЫХ ПЕРЕМЕННЫХ НА ОСНОВЕ АПРИОРНОЙ ИНФОРМАЦИИ Коэффициент ранговой корреляции Спирмэна =cov(x, y)/((S 2 x S 2 y)0. 5)=1– 6 ((xi–yi)2)/(n 3 -n) Коэффициент корреляции рангов Кендалла

Квадрат Юдена 1 2 3 4 5 6 7 1 A B C D E F G 2 B C D E F G A 3 D E F G A B C 1 2 1 3 1 2 3 1 2 2 2 1 2 3 A B C D E F G Σ 5 6 9 3 7 8 4

ЭКСПЕРИМЕНТАЛЬНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ВЫДЕЛЕНИЕ СУЩЕСТВЕННЫХ ПЕРЕМЕННЫХ Полный факторный эксперимент Переход от натурального масштаба переменной к условному ПФЭ 22 х1 х2 (1), a, b, ab -1 +1 -1 yр=b 0+b 1 x 1+b 2 x 2+b 12 x 1 x 2

+1 -1 -1 +1 Z= +1 +1 4 0 0 0 +1 +1 -1 -1 -1 +1 0 4 0 0 Z’= Z’Z= +1 -1 -1 -1 +1 +1 0 0 4 0 +1 +1 +1 -1 -1 +1 0 0 0 4 b 0=(y 1+y 2+y 3+y 4)/4; b 2=(–y 1–y 2+y 3+y 4)/4; b 1=(–y 1+y 2–y 3+y 4)/4; b 12=(y 1–y 2–y 3+y 4)/4.

Организация эксперимента и проведение расчетов реализуются в следующей последовательности. 1. Выбор уровней варьирования факторов. 2. Построение плана эксперимента и матрицы планирования. 3. Проведение экспериментальных измерений. 4. Вычисление коэффициентов линейной модели. 5. Проверка значимости коэффициентов модели. 6. Проверка содержательности модели. 7. Проверка адекватности модели. 8. Проверка предсказательной способности в центре плана. 9. Анализ остатков. 10. Интерпретация (анализ) модели. 11. Принятие решений на основе полученной информации

Почему используется полный факторный эксперимент S 2 bi= S 2 восп / N +1 +1 4 0 0 -1 +1 0 4 0 -1 -1 +1 +1 0 0 4 +1 +1 4 0 0 -1 +1 0 0 0 2 0 0 0 +1 +1 0 0 2

ПФЭ 23 х1 -1 +1 План х2 -1 -1 +1 +1 х3 -1 -1 +1 +1 Обозначение (1) a b ab c ac bc abc

yр=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 123 x 1 x 2 x 3 +1 -1 -1 -1 +1 +1 +1 -1 -1 +1 -1 -1 +1 -1 Z 1 = +1 -1 +1 +1 +1 -1 Z 2 = +1 +1 +1 -1 -1 +1 +1 +1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 +1

b 0=(y 1+y 2+y 3+y 4+y 5+y 6+y 7+y 8)/8; b 1=(-y 1+y 2 -y 3+y 4 -y 5+y 6 -y 7+y 8)/8; yuср = yu/N; b 2=(-y 1 -y 2+y 3+y 4 -y 5 -y 6+y 7+y 8)/8; b 3=(-y 1 -y 2 -y 3 -y 4+y 5+y 6+y 7+y 8)/8; S 2 R 0= (yu-yuср)2/(N-1); b 12=(y 1 -y 2 -y 3+y 4+y 5 -y 6 -y 7+y 8)/8; b 13=(y 1 -y 2+y 3 -y 4 -y 5+y 6 -y 7+y 8)/8; S 2 R = (yu-yuрасч)2 / (N-p); b 23=(y 1+y 2 -y 3 -y 4 -y 5 -y 6+y 7+y 8)/8; b 123=(-y 1+y 2+y 3 -y 4+y 5 -y 6 -y 7+y 8)/8; Содержательность модели: F=S 2 R 0/S 2 R Адекватность модели: F=S 2 R/S 2 восп. Предсказательная способность модели: t=|b 0 -y 0 ср|/(S 2 восп/m)0. 5

Дробные реплики ДФЭ 2 3 -1 + + D=0 + + - + + + - D=256 + - - + + + Генерирующее соотношение x 1 x 2=x 3 Определяющий контраст I=x 1 x 2 x 3 Система смешивания b 1 1+ 23; b 2 2+ 13; b 3 3+ 12; b 0 0+ 123

ДФЭ 24– 1 Генерирующие соотношения x 4=x 1 x 2 и x 4=x 1 x 2 x 3 Планы 1) d, a, b, abd, cd, ac, bc, abcd; 2) (1), ad, bd, ab, cd, ac, bc, abcd Определяющие контрасты I=x 1 x 2 x 4 и I=x 1 x 2 x 3 x 4. Системы смешивания 1) b 1 1+ 24; b 2 2+ 14; b 3 3+ 1234; b 4 4+ 12 ; b 13 13+ 234; b 23 23+ 134; b 34 34+ 123; b 0 0+ 124. 2) b 1 1+ 234; b 2 2+ 134; b 3 3+ 124; b 4 4+ 123; b 12 12+ 34; b 13 13+ 24; b 14 14+ 23; b 0 0+ 1234

ДФЭ 27– 4 y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 4 x 4+b 5 x 5+b 6 x 6+b 7 x 7 ГС: х4=х1·х2, х5=х1·х3, х6=х2·х3 и х7=х1·х2·х3 Обобщающий ОК включает контрасты, образованные из этих четырех ГС, а также произведений контрастов по два, по три и по четыре. I=х1·х2·х4=х1·х3·х5=х2·х3·х6=х1·х2·х3·х7=х2·х3·х4·х5= =х1·х3·х4·х6=х3·х4·х7=х1·х2·х5·х6=х2·х5·х7=х1·х6·х7= =х4·х5·х6=х1·х4·х5·х7=х2·х4·х6·х7=х3·х5·х6·х7= =х1·х2·х3·х4·х5·х6·х7. Пренебрегая эффектами взаимодействия, начиная с тройных, получим: b 0→β 0 (ниже тройных нет) b 1→β 1+β 24+β 35+β 67 b 2→β 2+β 14+β 36+β 57 b 3→β 3+β 15+β 26+β 47 b 4→β 4+β 12+β 37+β 56 b 5→β 5+β 13+β 27+β 46 b 6→β 6+β 23+β 17+β 45 b 7→β 7+β 34+β 25+β 16

Выбор факторов на основе отсеивающего эксперимента Планы Плакетта-Бермана n N Комбинации знаков 3 4 + - + 7 8 + + + - 11 12 + + - 15 16 + + - 19 20 + + - - - + + - - + - + - - + + - n – количество факторов; N – число экспериментов.

Планы случайного баланса № x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Ранг 1 2 3 4 5 6 7 8 + + + + + + + + + - 8 3 6 7 4 5 2 1

Анализ диаграмм рассеяния x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Md- 5. 0 4. 5 4. 0 3. 5 5. 5 6. 0 3. 0 4. 5 Md+ 4. 0 4. 1 3. 0 5. 5 2. 5 3. 5 4. 5 3. 0 B -1. 0 -0. 5 -1. 5 2. 0 3. 0 -2. 5 1. 5 -1. 5 n 2 - - - 3 - - |p| 2. 0 1. 5 6. 0 - - - 7. 5 - - 3 4

ДИСПЕРСИОННЫЙ АНАЛИЗ Однофакторный дисперсионный анализ Модель yij= + j+ ij, yij обозначает i-е наблюдение на j-м уровне фактора (i=1, 2, . . . , m; j=1, 2, …, n). Расчет y-yср=y-50. 1 yij i ↓ 2 6 5 12 9 10 14 11 0 5 6 3 j→ -5 -4 -5 -11 -7 4 -8 -11 -5 -7 -9

Вычисление сумм значений отклика по столбцам. T. 1=6+5+12+9+10=42; T. 2=14+11+0+5+6=36; T. 3=-5 -4 -5 -1 -7=-32; T. 4=-8 -11 -5 -7 -9=-40. T. . =42+36– 32– 40=6. Вычисление средних значений отклика для каждого уровня фактора. y 1 ср=42/5=8. 4; y 2 ср=36/5=7. 2; y 3 ср=-32/5=-6. 4; y 4 ср=-40/5=-8. 0. Вычисление сумм квадратов значений отклика yij по строкам и столбцам. SS 1=62+52+122+92+102=386; SS 2=142+112+02+52+62=378; SS 3=(-5)2+(-4)2+(-5)2+(-11)2+(-7)2 =236; SS 4=(-8)2+(-11)2+(-5)2+(-7)2+(-9)2 =340; SS=386+378+236+340=1340. SSобщ=1340 -62/(5× 4)=1338. 2.

Вычисление сумм квадратов, характеризующих влияние фактора и ошибки. SSисп=422/5+362/5+(-32)2/5+(-40)2/5 -62/20=1135. 0; SSош = 1338. 2– 1135. 0 = 203. 2. Вычисление средних квадратов (дисперсий). νобщ=5× 4– 1=19; νисп=4– 1=3; νош=4×(5 – 1) = 16. MSисп =1135/3=378. 3; MSош=203. 2/16=12. 7. Результаты однофакторного дисперсионного анализа Источник изменчивости Сумма квадратов SS Число степеней свободы ν Средний квадрат MS Критерий Фишера F Фактор 1135. 0 3 378. 3 29. 8 Ошибка 203. 2 16 12. 7 Итого 1138. 2 19

Двухфакторный дисперсионный анализ Модель yij= + j+βj+ ij Расчет yij – 13 мм Автомобиль Марка шины A B C D T. j I 4 1 -1 0 4 II 1 1 -1 -2 -1 III 0 0 -3 -2 -5 IV 0 -5 -4 -4 -13 Т i. 5 -3 -9 -8 -15=T. . 17 27 27 24 95=

Вычисление сумм квадратов SSобщ = 95 -(-15)2/16 = 80. 9; SSмар = ((5)2+(-3)2+(-9)2+ +(-8)2)/4 -(-15)2/16 = 30. 6; SSавт=((4)2+(-1)2+(-5)2+ +(-13)2)/4 -(-15)2/16 = 38. 6; SSост=80. 9 -30. 6 -38. 6=11. 7. Вычисление числа степеней свободы νобщ=n 1·n 2– 1; νмар=n 1 – 1; νавт=n 2 – 1; νост= νобщ–νмар–νавт. νобщ=4· 4– 1=15; νмар=4– 1=3; νавт=4– 1=3; νост=15– 3– 3=9.

Вычисление средних квадратов. МSмар=SSмар/νмар; МSавт=SSавт/νавт; MSост=SSост/νост. МSмар=30. 6/3=10. 2; МSавт=38. 6/3=12. 9; MSост=11. 7/9=1. 3. F=MSисп/MSост. Fмар=10. 2/1. 3=7. 85; Fавт=12. 9/1. 3=9. 92. Результаты двухфакторного дисперсионного анализа Источник изменчивости Сумма Число степеней квадратов SS свободы ν Средний квадрат MS Критерий Фишера F Марки шин 30. 6 3 10. 2 7. 85 Автомобили 38. 6 3 12. 9 9. 92 Остаток 11. 7 9 1. 3 ИТОГО 80. 9 15

Многофакторный дисперсионный анализ Модель yijk= + j+βj+ k + ijk A B C D Уровни х1: a 1; a 2; a 3; a 4; B D A C Уровни х2: b 1; b 2; b 3; b 4; C A D B D C B A Уровни х3: A; B; C; D; Этапы вычислений: 1. Подсчет итогов (сумм) и средних значений по строкам Ai, столбцам Bj и латинским буквам Ck. 2. Вычисление суммы квадратов результатов всех наблюдений: SS 1 = (Yijk)2. 3. Сумма квадратов итогов по строкам, деленная на число элементов в каждой строке: SS 2 = Ai 2 / n. 4. Сумма квадратов итогов по столбцам, деленная на число элементов в каждом столбце: SS 3 = Bj 2 / n. 5. Сумма квадратов итогов по латинским буквам, деленная на число элементов, соответствующих каждой букве: SS 4 = Ck 2 / n.

6. Корректирующий член, равный квадрату общего итога, деленному на общее число ячеек квадрата (на число опытов): SS 5 = Yijk / (n 2). 7. Сумма квадратов для строки: SSa=SS 2–SS 5. 8. Сумма квадратов для столбца: SSb=SS 3 -SS 5. 9. Сумма квадратов для латинской буквы: SSc=SS 4 -SS 5. 10. Общая сумма квадратов: SSобщ=SS 1 -SS 5. 11. Остаточная сумма квадратов: SSост=SSобщ-(SSa+SSb+SSc). Дисперсионный анализ латинского квадрата Источник изменч-ти Сумма квадратов SS Число степеней свободы Средний квадрат MS Критерий Фишера F Строки SSa=SS 2 -SS 5 a=n– 1 MSa=SSa/ a MSa / MSост Столбцы SSb=SS 3 -SS 5 b=n– 1 MSb=SSb/ b MSb / MSост Лат. буквы SSc=SS 4 -SS 5 c=n– 1 MSc=SSc/ c MSс / MSост Остаток SSост=SSобщ – ост=(n-1) (n-2) MSост=SSост/ ост – (SSa+SSb+SSc) Итого SSобщ=SS 1–SS 5 общ=n 2– 1

Греко-латинский квадрат Исследовано влияние рецептурных факторов на относительное удли-нение при разрыве композиций на основе поливинилхлорида (ПВХ). x 1 – партия полимера. Уровни фактора x 1: a 1, a 2, a 3, a 4. x 2 – содержание пластификатора. Уровни фактора x 2, масс. ч. : b 1 – 20, b 2 – 30, b 3 – 40, b 4 – 50. x 3 – тип стабилизатора. Уровни фактора x 3: A –соевое масло, B – стеарат кальция, C – стеарат бария и D – стеарат кадмия. x 4 – тип динамометра. Уровни фактора x 4: , β, и. A B C Dβ C D Aβ B Bβ A D C D Cβ B A

План и результаты эксперимента при изучении свойств ПВХ x 2 x 1 a 2 a 3 a 4 Aiср Ai 2 b 1 A (8. 2) B (10. 2) C (8. 3) Dβ (5. 9) 32. 6 8. 2 1063 b 2 C (15. 1) D (25. 8) Aβ (22. 3) B (21. 2) 84. 4 21. 1 7123 b 3 Bβ (48. 9) A (25. 7) D (49. 6) C (35. 2) 160. 4 39. 9 25408 b 4 D (74. 1) Cβ (69. 5) B (80. 9) A (57. 1) 281. 6 70. 4 79299 Bj 146. 3 131. 2 161. 1 120. 4 G= =558. 0 Bjср 36. 6 32. 8 40. 3 29. 9 Bj 2 21404 17213 25953 14256

A B C D C k 113. 3 161. 2 128. 1 155. 4 Ckср 28. 3 Ck 2 12837 25985 16410 24149 40. 3 β 32. 0 38. 9 Dl 129. 3 146. 6 150. 1 132. 0 Dlср 32. 3 D l 2 16718 21492 22530 17424 36. 7 37. 8 33. 0

Вычисление суммы квадратов результатов всех наблюдений. . . SS 1=8. 22+10. 22+8. 32+. . . +80. 92+57. 12 =28992. 54. Сумма квадратов итогов по строкам, деленная на число элементов в каждой строке. SS 2=(1063+7123+25408+79299) / 4 =28223. 25. Сумма квадратов итогов по столбцам, деленная на число элементов в каждом столбце. . SS 3=(21404+17213+25953+14256)/4=19706. 50. Сумма квадратов итогов по латинским буквам, деленная на число элементов, соответствующих каждой букве. SS 4=(12837+25985+16410+24149) / 4 =19845. 25. Сумма квадратов итогов по греческим буквам, деленная на число элементов, соответствующих каждой букве. SS 5=(16718+21492+22530+17424) / 4 =19541. 00.

Корректирующий член, равный квадрату общего итога, деленному на общее число ячеек квадрата (на число опытов). SS 6 = 558. 02/ 16 = 19460. 25. Сумма квадратов для строки. SSa=SS 2 -SS 6; SSa=28223. 25 -19460. 25=8763. 00. Сумма квадратов для столбца. SSb=SS 3 -SS 6; SSb=19706. 50 -19460. 25=246. 25. Сумма квадратов для латинской буквы. SSc=SS 4 -SS 6; SSc=19845. 25 -19460. 25=385. 00. Сумма квадратов для греческой буквы. SSd=SS 5 -SS 6; SSd=19541. 00 -19460. 25=80. 75. Общая сумма квадратов. SSобщ=SS 1 -SS 6; SSобщ=28992. 54 -19460. 25=9532. 27. Остаточная сумма квадратов. SSост=SSобщ-(SSa+SSb+SSc+SSd); SSост=9532. 27 -(8763. 00+246. 25+385. 00+80. 75)=57. 27.

Дисперсионный анализ греко-латинского квадрата 4 4. Источник изменчивости Сумма квадратов SS Число степеней свободы ν Средний квадрат MS Критерий Фишера F Строки, x 2 8763. 00 3 2921. 0 152. 9 Столбцы, x 1 246. 25 3 82. 1 4. 3 Лат. буквы, x 3 385. 00 3 128. 3 6. 7 Греч. буквы, x 4 80. 75 3 26. 9 1. 4 Ошибка 57. 27 3 19. 1 F(3; 3; 0. 05)=9. 28 и F(3; 3; 0. 1)=5. 39 Итого 9532. 27 15

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА В УСЛОВИЯХ ВРЕМЕННОГО ДРЕЙФА Влияние этого временнóго дрейфа на параметры математического описания процесса можно практически устранить, разбивая серию опытов на отдельные блоки так, чтобы эффект от временнóго дрейфа оказался смешанным с произведениями факторов, для которых коэффициенты регрессии достаточно малы. Допустим, необходимо устранить влияние временнóго дрейфа на параметры уравнения регрессии, получаемого в результате полного трехфакторного эксперимента. С этой целью разобьем эксперимент на два блока и введем новую независимую переменную хд, характеризующую дрейф. Положим хд=х1 х2 х3. В один из блоков отберем опыты, для которых хд=+1, а в другой блок – для которых хд=– 1. Формально это планирование можно рассматривать как эксперимент типа 24– 1 с генерирующим соотношением хд=х1 х2 х3.

Планирование в условиях временного дрейфа Блок х1 х2 х3 хд=х1 х2 х3 Отклик 1 – 1 +1 – 1 – 1 +1 +1 +1 +1 +1 – 1 – 1 2 y 1+βд y 2+βд y 3+βд y 4+βд y 5–βд y 6–βд y 7–βд y 8–βд

Если уравнение регрессии ищется в виде y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 23 x 2 x 3+b 123 x 1 x 2 x 3, то коэффициенты регрессии будут являться следующими оценками: b 0→β 0; b 1→β 1; b 2→β 2; b 3→β 3; b 12→β 12; b 13→β 13; b 23→β 23; b 123→β 123+βд; Рассчитаем, например, коэффициенты b 1 и b 123: b 1=(–(y 1+βд)+(y 2+βд)–(y 3+βд)+(y 4+βд)–(y 5–βд)+(y 6– βд)–(y 7–βд)+(y 8–βд))/8= =(–y 1+y 2–y 3+y 4–y 5+y 6–y 7+y 8)/8; b 123=((y 1+βд)+(y 2+βд)+(y 3+βд)+(y 4+βд)–(y 5–βд)–(y 6– βд)–(y 7–βд)–(y 8–βд))/8= =(y 1+y 2+y 3+y 4–y 5–y 6–y 7–y 8)/8+βд. Следовательно, все коэффициенты регрессии, кроме b 123, не содержат погрешностей, обусловленных временным дрейфом.

Анализ временнóго дрейфа может быть осуществлен также с помощью магических квадратов. Пусть нужно поставить N независимых опытов. Числа от 1 до N – это некоторые параметры времени, такие как часы или дни. Высказывается предположение, что при постановке N опытов имеет место временнóй дрейф экспериментальных данных. Характер дрейфа линейный. Рассмотрим план, представляющий собой совмещение магического квадрата с полным факторным экспериментом 24.

Рассмотрим результаты определения зависимости твердости резин от температуры вулканизации (= 180 о. С и = 140 о. С), продолжительности процесса (= 17 мин и = 5 мин), дозировки ускорителя (= 1. 2 масс. ч. и = 0. 4 масс. ч.) и наполнителя (= 30 масс. ч. и = 10 масс. ч.). Реализован полный факторный эксперимент 24 Допустим, что ежедневно ставим один опыт, тогда все опыты будут поставлены за 16 дней. В течение этого времени имеет место линейный дрейф. Для защиты от этого дрейфа наложим ПФЭ 24 на 4 4 магический симметричный квадрат, элементами которого являются номера шестнадцати опытов. Такой план приемлем, если взаимодействия х1 х4 и х2 х3 незначимы.

Факторный эксперимент 24, совмещенный с 4 4 магическим квадратом x 1(+1) x 2(+1) x 4(+1) x 3(+1) x 1(– 1) x 2(+1) x 2(– 1) 16 72. 0 2 70. 0 3 73. 8 13 59. 8 x 4(– 1) 5 69. 8 11 57. 8 10 62. 7 8 54. 7 x 4(+1) x 3(– 1) 9 67. 5 7 59. 3 6 64. 4 12 52. 2 x 4(– 1) 4 62. 4 14 48. 3 15 52. 2 1 50. 2

« x 1=[-1; 1; -1; 1; -1; 1]; « x 2=[-1; -1; 1; 1; -1; 1; 1]; « x 3=[-1; -1; 1; 1; 1; 1]; « x 4=[-1; -1; 1; 1; 1]; « y=; « X=; « b=(inv(X"*X))*(X"*y) b=61. 0687 2. 3187 4. 5312 4. 0062 3. 8063 « Y=X*b; « max(abs(y-Y)) ans = 3. 7938 « [(y-Y). /y*100] ans = 7. 5573 « (64. 7 -61. 1)/15*2 ans=0. 4800 В последней формуле сопоставлены значения отклика до дрейфа и после него. Если бы не было дрейфа, значение отклика в нулевой точке было бы 64. 7 единиц, а в результате дрейфа (пребывание в агрессивной среде) понизилось на 3. 6 единиц.

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Зависимость между двумя переменными величинами называется статистической, если каждому значению одной из них соответствует множество значений другой, но число этих значений не является постоянным, а сами значения не отражают определенной закономерности. Рассмотрим двумерные наблюдения, т. е. такие наблюдения, которые дают значения двух случайных величин х и у. Используем такую статистическую характеристику – ковариацию или второй смешанный центральный момент (иначе – корреляционный момент) величин х и у: Коэффициент корреляции

Справедливы следующие соотношения: y=a+bx; x=a +׳ b ׳ y Таким образом, мы получаем два уравнения регрессии, которые отвечают двум различным математическим формулировкам задачи: в первом случае минимальное значение имеет сумма квадратов отклонений, взятых параллельно оси ординат, во втором случае – сумма квадратов отклонений, взятых параллельно оси абсцисс.

При подсчете коэффициентов регрессии можно воспользоваться следующими соотношениями: β= +φ При rxy = 1, tgφ = 0, следовательно, в этом частном случае обе линии регрессии совпадают. Каждая из переменных становится линейной функцией другой переменной. При rxy = 0 мы получаем две взаимно перпендикулярные прямые, параллельные координатным осям и проходящие через точку с координатами В этом случае очевидно, что между переменными не может существовать линейной статистической связи.

y 1 – условное напряжение при удлинении 100%, МПа; y 2 – условное напряжение при удлинении 200%, МПа; y 3 – условное напряжение при удлинении 300%, МПа; y 4 – условная прочность при растяжении, МПа; y 5 – относительное удлинение при разрыве, %; y 6 – сопротивление разлиру, к. Н/м; y 7 – твердость по Шору А.

Представление о корреляциях с помощью модели косинуса Соотношение между вулканизационными характеристиками ν=877; r=0. 968; r=0. 935; r=0. 984; tgφ=– 0. 0281. tgφ=– 0. 0535 tgφ=– 0. 0155.

ОПТИМИЗАЦИЯ ОДНОМЕРНЫЙ ПОИСК Метод последовательной дихотомии предусматривает размещение на каждом этапе экспериментирования сразу двух новых точек, расположенных симметрично относительно середины интервала неопределенности на расстоянии друг от друга. Здесь – по возможности малая величина, ограниченная снизу разрешающей способностью доп в измерении величины x. Значение доп – это та минимальная разница между соседними наблюдениями x, которая может быть обнаружена инструментально с помощью тех измерительных средств, которые имеются в распоряжении экспериментатора.

Метод поиска Фибоначчи базируется на использовании чисел Фибоначчи Fk, определяемых рекуррентным соотношением вида: Fk=Fk-1+Fk-2, k>1, F 0=F 1=1. N 1 2 3 4 5 6 7 8 9 FN 1 2 3 5 8 13 21 34 55 Метод золотого сечения является частной разновидностью метода Фибоначчи и отличается от него лишь тем, что в методе золотого сечения нет необходимости в обязательном предварительном определении общего числа опытов N. Координаты x(1) (первой точки в этом методе) находятся по формуле: x(1) = xmin + q L,

МНОГОМЕРНЫЙ ПОИСК Многомерность делает унимодальность менее вероятной Нельзя найти меру эффективности поиска, которая не зависела бы некоторым образом от удачи экспериментатора. Восприятие размера в многомерных пространствах. Существует большое число разнообразных методов многомерного поиска. В дальнейшем будут рассмотрены лишь некоторые из них, получившие наибольшее распространение для целей экспериментальной оптимизации. Эти методы можно разделить на две большие группы: на градиентные и неградиентные методы поиска экстремума.

Метод покоординатного поиска, (метод Гаусса-Зайделя) Метод Гаусса-Зайделя весьма прост при практической реализации, достаточно помехоустойчив. Однако ясно, что траектория поиска вряд ли будет наикратчайшей. Кроме того метод Гаусса. Зайделя имеет тенденцию к ложной остановке процедуры, если в ходе движения поисковая точка окажется на узком «гребне» .

ПЛАНИРОВАНИЕ ЭКСТРЕМАЛЬНЫХ ЭКСПЕРИМЕНТОВ В ПРОМЫШЛЕННЫХ УСЛОВИЯХ 1. Промышленный эксперимент должен одновременно с нормальным функционированием объекта и производством товарной продукции обеспечить получение полезной информации для нахождения оптимальных условий управления объектом. 2. Чтобы извлечь такую информацию, можно реализовать целенаправленное «покачивание» объекта около так называемого «рабочего режима» , планируя пробные шаги варьирования по управляемым факторам и выделяя влияние изучаемых переменных на отклик в условиях шума с помощью регрессионного анализа. 3. В производственных условиях, по сравнению с лабораторными, имеет место большое количество неконтролируемых и неуправляемых факторов, влияющих на ход процесса. 4. Медленные (относительно частоты постановки опытов) случайные флуктуации одних неконтролируемых и неуправляемых факторов промышленного объекта вызывают нерегулярный временной дрейф поверхности целевого отклика по отношению к управляемым факторам, то есть нерегулярное изменение с течением времени всей поверхности, а значит, и координат точки ее экстремума в их пространстве. 5. В промышленных условиях для реализации адаптационной оптимизации нет специального штата высококвалифицированных исследователей, а есть у производственной установки обслуживающий персонал довольно низкой квалификации. Здесь нет и той насыщенности исследования измерительными, регистрирующими приборами и вычислительными устройствами, которая присуща лабораторному эксперименту. Поэтому планы и вычислительные алгоритмы обработки наблюдений промышленного эксперимента должны быть достаточно просты. 6. Адаптационная оптимизация производственных установок предполагает постоянное исследование и подстройку объекта, то есть неограниченное временем проведение промышленного эксперимента, а значит, и неограниченное число его опытов.

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Во многих ситуациях, которые могут встретиться в промышленности, в экономической деятельности требуется максимизировать или минимизировать некоторую количественную величину при определенных ограничениях. Например, бизнесмен хочет максимизировать свою прибыль, однако при этом он ограничен общим числом имеющихся у него машин, наличием людей, капиталом, который он может инвестировать, и рядом других экономических факторов. Пример. Имеется три вещества сложного состава В 1, В 2 и В 3 разной цены. Каждое из них содержит определенное количество необходимых ингредиентов И 1, И 2, И 3 и И 4 Известно, что в течение суток требуется И 1 – не менее 250, И 2 – не менее 60, И 3 – не менее 100 и И 4 – не менее 220. Требуется минимизировать затраты на приобретение этих веществ. Очевидно, что количество приобретаемых веществ не может быть отрицательным.

Содержание необходимых ингредиентов в веществах и цены этих веществ В 1 В 2 В 3 И 1 4 6 15 И 2 2 2 0 И 3 5 3 4 И 4 7 3 12 Цена 44 35 100

В состав MATLAB входит Tool. Box Optimization, предназначенный для решения такого рода задач. Используется функция linprog. Первым аргументом linprog всегда является вектор f (вектор коэффициентов), далее задается матрица A и вектор b. Решение. x 1, x 2 и x 3 – искомые количества веществ. Целевая функция: f. Tо x=44·x 1+35·x 2+100·x 3. При наличии ограничений в виде равенств дополнительными аргументами могут быть Aeq и beq, наконец, двусторонние ограничения являются шестым и седьмым аргументами linprog. Поскольку линейные ограничения содержат «меньше или равно» , а количество ингредиентов в продуктах не должно быть менее заданных величин, то следует изменить знаки обеих частей системы. Для решения задачи составляется файл-прграмма. При вызове linprog вместо неиспользуемых аргументов (нет ограничений в виде равенств и верхней границы для неизвестных) задаются пустые массивы, обозначаемые .

Решение. Матрица А и векторы b и lb: =linprog(f, A, b, , lb, ); p=1. 8118 e+003; р – общая стоимость продуктов. Интерпретация. Представляет интерес умножить A на х, определить рекомендуемое содержание ингредиентов и сравнить его с минимально допустимым. A*x= [-250; -60: -142. 14; -220]; Сравнивая эти числа с вектором b, можно констатировать завышенное содержание третьего ингредиента. Это объясняется тем, что не было введено ограничение на максимальное содержание.

КОНТРОЛЬНЫЕ НАБЛЮДЕНИЯ Одно из наиболее важных применений статистическая теория находит в методах статистического контроля, среди которых хорошо известным примером может служить контроль качества. Контроль качества находит наиболее широкое применение в промышленности. Методика контроля качества находит два основных применения. Первое применение она находит в управлении технологическими процессами, при котором какой-либо реальный процесс, например такой, как работа машины, измеряется с целью оценки хода работы в настоящее время и, как подразумевается, для получения отправных данных для работы в ближайшем будущем. Второе применение она находит в приемочном контроле, который оценивает ход работы в прошлом путем измерения качества произведенных товаров. Поэтому это второе применение имеет дело с конечной совокупностью вещей, которые уже были произведены, тогда как управление технологическим процессом нацелено на проверку самого хода фактического производства. Это позволяет руководству выявить недостатки в процессе почти одновременно с их появлением и тем самым предотвратить выпуск изделий, имеющих дефекты.

Метод контроля основывается на свойствах нормальной кривой. Около 99. 7% всех наблюдаемых значений, взятых из нормально распределенной совокупности, располагаются в пределах интервала трех стандартных отклонений в любую сторону от среднего значения, и поэтому только около трех из каждой тысячи показаний наблюдений располагается вне этих пределов. Исходя из этого, может быть составлена контрольная карта, которая показывает возможные значения на вертикальной оси и ряды последовательных целых чисел, представляющих последовательные наблюдения, расположенные вдоль горизонтальной оси. Горизонтальная линия проведена на высоте, соответствующей среднему значению; гори зонтальные линии проведены также на высо тах, представляющих контрольные пределы. Верхний контрольный предел установлен на высоте, соответствующей значению средней плюс три стандартных отклонения (С. о.); ни жний контрольный предел установлен на вы соте, соответствующей значению средней минус три стандартных отклонения, так что около 99. 7% всех показаний должны расположиться в этих пределах.

Контрольные карты можно использовать: 1. Как сигнал о том, что в процессе произошло некоторое изменение, так и в качестве оценки величины изменения, для которого требуется коррекция. 2. Исключительно как сигнал о том, что в процессе произошло некоторое изменение, чтобы оператор осознал, что процесс требует его внимания. 3. Для получения оценок числа случаев в прошлом, когда в процессе возникали изменения, и установления на их основе причин, вызывающих эти изменения. 4. Как меру качества продукции для классификации по периодам. В производстве чаще всего используются: 1) контрольные карты Шухарта (карты R и s – средних значений, размаха и стандартного отклонения); 2) карты скользящих геометрических средних (скользящего экспоненциально взвешенного среднего) и скользящих размахов; 3) карты накопленных сумм; 4) многомерные контрольные карты.

Контрольные карты и R для вулканизационных характеристик t 10, t 50 и t 90 Карта накопленных сумм

ОПИСАНИЕ ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ При изучении почти стационарной области возникает ряд новых сложных проблем. Если мы хотим описать эту часть поверхности отклика полиномом (многочленом) второго порядка, то переменные нужно варьировать уже на трех уровнях. Возникает сложная задача построения таких планов. Здесь, прежде всего, нужно выбрать какой-то достаточно разумный критерий оптимальности. Во всяком случае, с самого начала было ясно, что планы полного факторного эксперимента типа 3 n (n – количество факторов) здесь неприемлемы, так как они потребуют слишком большого числа опытов. Если три фактора – 33=27, четыре фактора – 34=81. В работе Бокса и Уилсона (1951) была выдвинута идея построения композиционных планов, ядром которых служат линейные ортогональные планы. Предполагается что, попав в почти стационарную область, исследователь сначала ставит опыты, используя линейные планы. Затем, убедившись в том, что гипотеза линейности здесь не проходит, он достраивает линейный план до плана второго порядка; отсюда и само название - композиционный план.

Рассмотрим такую ситуацию: имеется два фактора, и на первом этапе мы строим полный факторный эксперимент (ПФЭ) 22. На рисунке точки этого плана изображены зачерненными кружками. Далее ставится эксперимент в центре квадрата для проверки гипотезы адекватности. Затем реализуются «звездные» точки. Выбор плана – это всегда компромиссное решение, принимаемое в результате диалога. Раньше это был диалог со справочником-каталогом планов, сейчас – это диалог с компьютером.

Ортогональность плана. План называется ортогональным, если ковариационная матрица плана содержит все нулевые элементы, кроме элементов главной диагонали (диагональная матрица). Для ортогональных планов все оценки коэффициентов независимы: эллипсоид рассеяния ориентирован так, что направление его главных осей совпадает с направлением координатных осей в пространстве коэффициентов. Ротатабельность плана. Ротатабельные планы имеют ковариационную матрицу, инвариантную к вращению координат, позволяют получить одинаковую дисперсию предсказанных значений функции отклика во всех равноудаленных от центра эксперимента точках. Выполнение этого условия делает любое направление от центра эксперимента равнозначным в смысле точности оценки поверхности. Если информационные контуры плана представить как поверхности с равными значениями дисперсии оценки поверхности отклика, то для ротатабельного плана эти поверхности будут представлять собой сферы.

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ПРОГРАММНЫХ ПРОДУКТОВ ДЛЯ АНАЛИЗА ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ Экспериментальная сетка, сформированная ломаными линиями без аппроксимации уравнением Поверхность отклика, отвечающая наибольшему значению коэффициента детерминации

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ПРОГРАММНЫХ ПРОДУКТОВ ДЛЯ АНАЛИЗА ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ Поверхность отклика, отвечающая модели 310 по каталогу программы TC 3 D Поверхность отклика, отвечающая модели 301 по каталогу программы TC 3 D

ПОСТРОЕНИЕ ДИАГРАММ СОСТАВ-СВОЙСТВО Частным случаем решения задачи описания почти стационарной области является построение регрессионных моделей для систем, являющихся смесями двух и более различных компонентов. Переменные xi таких систем являются пропорциями (относительным содержанием) нескольких (например, трех) компонентов смеси и удовлетворяют условию xi = x 1 + x 2 + x 3 = 1 Геометрическое место точек, удовлетворяющих условию нормированности сумм переменных, представляет собой двумерный симплекс (треугольник). Каждой точке симплекса соответствует смесь определенного состава, и любой комбинации относительных содержаний трех компонентов соответствует определенная точка симплекса. В рассматриваемой нами ситуации вершины симплекса соответствуют 100%-му содержанию каждого компонента; стороны треугольника, лежащие напротив этих вершин, соответствуют нулевому содержанию данного компонента; относительное содержание каждого компонента откладывается вдоль соответствующей стороны треугольника состава. Состав может быть выражен в мольных, массовых и объемных долях или в процентах.

Опустив из каждой вершины треугольника высоту, разделив каждую из них на десять равных по величине отрезков и проведя через полученные деления прямые, параллельные сторонам треугольника, получим треугольную сетку.

Для решения задачи построения диаграммы «свойство-состав» на симплексе целесообразно рассматривать модель y=y(x 1, x 2, x 3) (y – отклик) в форме приведенного полинома. Такие приведенные полиномы для трехкомпонентных смесей показаны ниже. Модель второго порядка для трех переменных: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 Неполная кубическая модель: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + 123 x 1 x 2 x 3 Модель третьего порядка: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + + 12(x 1 – x 2) + 13(x 1 – x 3) + 23(x 2 – x 3) + 123 x 1 x 2 x 3 Модель четвертого порядка: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + + 12(x 1 – x 2) + 13(x 1 – x 3) + 23(x 2 – x 3) + + 12 x 1 x 2(x 1 – x 2)2+ 13 x 1 x 3(x 1 – x 3)2+ 23 x 2 x 3(x 2 – x 3)2+ 1123 x 12 x 2 x 3+ 1223 x 1 x 22 x 3+ 1233 x 1 x 2 x 32 Полиномы такого вида получаются из обычных полиномов соответствующей степени введением соотношения xi = x 1 + x 2 + x 3 = 1

Так, например, полином второй степени, в общем случае имеющий вид y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 11 x 12+b 22 x 22+b 33 x 32, в приведенной форме с учетом условия xi = x 1 + x 2 + x 3 = 1 приобретет форму y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 При переходе к приведенной форме постоянный член b 0 исключается из уравнения умножением обеих сторон xi = x 1 + x 2 + x 3 = 1 на b 0. b 0 x 1 + b 0 x 2 + b 0 x 3 = b 0 и подстановкой полученных результатов в уравнение y=(b 0+b 1)x 1+(b 0+b 2)x 2+(b 0+b 3)x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 11 x 12+b 22 x 22+b 33 x 32 Исключения квадратичных членов можно достичь подстановкой в уравнение вместо величин x 12, x 22 и x 32 значений x 12=x 1–x 1 x 2–x 1 x 3, x 22=x 2–x 1 x 2–x 2 x 3, x 32=x 3–x 1 x 3–x 2 x 3, образованных путем умножения соотношения xi = x 1 + x 2 + x 3 = 1 соответственно на x 1, x 2 и x 3 y=(b 0+b 11)x 1+(b 0+b 22)x 2+(b 0+b 33)x 3+(b 12–b 11–b 22)x 1 x 2+ + (b 13–b 11–b 33)x 1 x 3 +(b 23–b 22–b 33)x 2 x 3 Введя обозначения 1=b 0+b 11; 2=b 0+b 22; 3=b 0+b 33; 12=b 12–b 11–b 22; 13= b 13–b 11–b 33; 23=b 23–b 22–b 33, получим приведенную форму y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3

Для оценки коэффициентов приведенных полиномов были предложены симплекс-решетчатые планы. В таблице представлено расположение точек (матрица планирования) и обозначение откликов для случая модели второго порядка. Отклик Координаты точек Отклик Координаты точек x 1 x 2 x 3 y 1 1 0 0 y 12 1/2 0 y 2 0 1 0 y 13 1/2 0 1/2 y 3 0 0 1 y 23 0 1/2

Для построения модели второго порядка реализуются точки в вершинах треугольника и в серединах его сторон. Схема расположения экспериментальных точек в симлексных решетках {3, 2} {3, 3}* {3, 3} {3, 4} {4, 2} {q, n}-решетки, q – число компонентов смеси, n – степень полинома Формулы для вычисления параметров модели второго порядка 1=y 1; 2=y 2; 3=y 3; 12=4 y 12– 2 y 1– 2 y 2; 13=4 y 13– 2 y 1– 2 y 3; 23=4 y 23– 2 y 2– 2 y 3.

Пример. Результаты исследования прочности пористых резин на основе комбинации каучуков СКМС-30 РП и БС-45 К, содержа-щих три типа порообразователей х1 – N, N’-динитрозопентаметилен-тетрамин (ЧХЗ-18), х2 – азодикарбонамид (ЧХЗ-21), х3 – бикарбонат натрия. Координаты точек и результаты эксперимента Координаты точек x 1 x 2 x 3 1 0 0 0 1 0 0 σ, МПа Координаты точек σ, МПа x 1 x 2 x 3 5. 6 5. 9 ½ 1/2 0 4. 4 4. 7 0 3. 2 1/2 0 1/2 5. 1 5. 4 1 6. 0 6. 3 0 1/2 3. 8 4. 0

Вычисление коэффициентов приведенного полинома. σ = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 , хi . 1= σ1; 2= σ2; 3= σ3; 12=4σ12– 2σ1– 2σ2; 13=4σ13– 2σ1– 2σ3; 23=4σ23– 2σ2– 2σ3. β 1=(5. 6+5. 9)/2=5. 75; β 2=(3. 0+3. 2)/2=3. 10; β 3=(6. 0+6. 3)/2=6. 15; β 12=4(4. 4+4. 7)/2 -2(5. 6+5. 9)/2 -2(3. 0+3. 2)/2=0. 50; β 13=4(5. 1+5. 4)/2 -2(5. 6+5. 9)/2 -2(6. 0+6. 3)/2=-2. 80; β 23=4(3. 8+4. 0)/2 -2(3. 0+3. 2)/2 -2(6. 0+6. 3)/2=-2. 90. Уравнение регрессии имеет вид: σ = 5. 75 x 1 + 3. 10 x 2 + 6. 15 x 3 + 0. 50 x 1 x 2 - 2. 80 x 1 x 3 - 2. 90 x 2 x 3. Проверка однородности дисперсий. Критерий Кохрена: G=S 2 max/ Σ S 2 j. Средние значения: 5. 75; 3. 10; 6. 15; 4. 55; 5. 25; 3. 90. Дисперсии: 0. 045; 0. 020; 0. 045; 0. 020. Условие однородности дисперсий: G

Расчет дисперсии воспроизводимости. N=6; S 2 E =(0. 045+0. 020+0. 045+0. 020)/6=0. 037. Значения отклика в проверочной точке 4. 1; 4. 3. σ0 ср=4. 20 МПа Проверка адекватности модели. =a 12+a 22+a 32+a 122+a 132+a 232; ai=xi(2 xi-1); aij=4 xixj. t= σ·(r/(S 2 E (1+))1/2, = p(r-1), y=|σрасч-σср| – модуль разности отклика, рассчитанного по уравнению, и среднего отклика, определенного экспериментально в проверочной точке по r повторным наблюдениям. a 1=a 2=a 3=1/3·(2· 1/3 -1)=-1/9; a 12=a 13=a 23=4· 1/3=4/9; =3(-1/9)2+3(4/9)2=0. 630. Значения прочности в центре плана: σ0 расч=5. 75/3+3. 10/3+6. 15/3+ 0. 50/9 -2. 80/9 -2. 90/9=4. 42 МПа. t=|4. 42 -4. 20|·(2/(0. 037(1+0. 630))1/2 =1. 27; =6(2 -1)=6; =5 %; t(6; 0. 05)=2. 45.

Условие адекватности: tрасч

Пример. Влияние состава полимерной матрицы на тепловой эффект вулканизации. Все рецептуры содержали 15 масс. % каучука СКМС 30 РП и 30 масс. % смеси полимеров: каучук СКД (х1), полистирол (х2) и каучук СКМС-30 РП (х3) в различных соотношениях. Все системы содержали порообразователи. Для построения диаграмм использована программа в системе MATLAB. Но в нее были внесены определенные коррективы, которые позволили реализовать процедуру в следующей последовательности. С использованием программы Table Curve 3 D формируется модель, включающая два фактора х1 и х2. Затем составляется столбец значений параметров полученной модели b. этот столбец вводится в командное окно MATLAB. Затем открывается программа-модуль для построения диаграмм. В эту программу заранее внесены возможные уравнения. Такой подход позволяет рассчитать несколько конкурирующих моделей и оценить их статистические характеристики. В рассматриваемом случае получены следующие модели: 310 z=a+bx+cy+dx^2+ey^2+fxy+gx^3+hy^3+ixy^2+jx^2 y; 1301 z=(a+cx+ey+gx^2+iy^2+kxy)/(1+bx+dy+fx^2+hy^2+jxy); 301 z=a+bx+cy+dx^2+ey^2+fxy; 65 z=a+bx+cx^2+dx^3+ex^4+fx^5+gy+hy^2+iy^3+jy^4+ky^5; 50 z=a+bx+cx^2+dx^3+ex^4+fy+gy^2+hy^3+iy^4+jy^5.

На рисунке слева сплошными линиями показаны изолинии, полученные с использованием модели третьего порядка (310), а пунктиром – модели второго порядка. Справа даны изолинии (сплошные) применительно к моделям 65 и 50. они практически совпадают. Пунктиром показаны изолинии для модели 1301 по каталогу TC 3 D.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Контрольная работа

по дисциплине: Общий психологический практикум

1) Содержательное и формальное планирование эк спери ментальных исследований

Планирование психологического эксперимента

Планирование эксперимента -- один из важнейших этапов организации психологического исследования, на котором исследователь пытается сконструировать наиболее оптимальную для воплощения на практике модель (то есть план) эксперимента.

Грамотно составленная схема исследования, план, позволяет добиться оптимальных значений валидности, надёжности и точности в исследовании, предусмотреть нюансы, за которыми сложно уследить при бытовом «спонтанном экспериментировании». Зачастую, чтобы скорректировать план, экспериментаторы проводят так называемое пилотажное, или пробное, исследование, которое можно рассматривать как «черновик» будущего научного эксперимента.

Основные вопросы, на которые отвечает экспериментальный план

Экспериментальный план создаётся для того, чтобы ответить на основные вопросы о:

· количестве независимых переменных, которые используются в эксперименте (одна или несколько?);

· количестве уровней независимой переменной (изменяется ли независимая переменная или остаётся постоянной?);

· методах контроля дополнительных, или возмущающих, переменных (какие необходимо и целесообразно применить?):

o метод прямого контроля (прямое исключение известной дополнительной переменной),

o метод выравнивания (учитывать известную дополнительную переменную при невозможности её исключения),

o метод рандомизации (случайный отбор групп в случае неизвестности дополнительной переменной) .

Одним из самых важных вопросов, на которые должен ответить экспериментальный план, -- определить, в какой последовательности должно происходить изменение рассматриваемых стимулов (независимых переменных), воздействующих на зависимую переменную. Такое воздействие может варьироваться от простой схемы «A 1 --A 2 », где A 1 -- первое значение стимула, A 2 -- второе значение стимула, до более сложных, таких, как «A 1 --A 2 --A 1 --A 2 », и т. д. Последовательность предъявления стимулов -- очень важный вопрос, напрямую касающийся соблюдения валидности исследования: к примеру, если постоянно предъявлять человеку один и тот же стимул, он может стать менее восприимчив к нему.

Этапы планирования

Планирование включает в себя два этапа :

o Определение ряда теоретических и экспериментальных положений, образующих теоретическую основу исследования.

o Формулировка теоретических и экспериментальных гипотез исследования.

o Выбор необходимого метода эксперимента.

o Решение вопроса выборки испытуемых:

§ Определение состава выборки.

§ Определение объёма выборки.

§ Определение способа формирования выборки.

2. Формальное планирование эксперимента:

o Достижение возможности сравнения результатов.

o Достижение возможности обсуждения полученных данных.

o Обеспечение экономичного проведения исследования.

Главной целью формального планирования считается исключение максимально возможного числа причин искажения результатов.

Виды планов

1. Простые (однофакторные) планы

o Опыты с воспроизводимыми условиями

o Опыты с привлечением двух независимых групп (экспериментальной и контрольной)

2. Комплексные планы

o Планы для многоуровневых экспериментов

o Факторные планы

3. Квазиэкспериментальные планы

o Планы ex post facto

o Планы экспериментов с малым N

4. Планы корреляционных исследований

Простые планы , или однофакторные, предусматривают изучение влияния на зависимую переменную только одной независимой переменной. Преимущество таких планов состоит в их эффективности при установлении влияния независимой переменной, а также в лёгкости анализа и интерпретации результатов. Недостаток заключается в невозможности сделать вывод о функциональной зависимости между независимой и зависимой переменными.

Опыты с воспроизводимыми условиями

В сравнении с опытами с привлечением двух независимых групп такие планы требуют меньшего количества участников. План не подразумевает наличия разных групп (например, экспериментальной и контрольной) . Цель таких опытов -- установить воздействие одного фактора на одну переменную.

Опыты с привлечением двух независимых групп -- экспериментальной и контрольной -- опыты, в которых экспериментальному воздействию подвергается лишь экспериментальная группа, в то время как контрольная группа продолжает делать то, что она обычно делает. Цель таких опытов -- проверка действия одной независимой переменной.

Комплексные планы

Комплексные планы составляются для экспериментов, в которых изучается либо воздействие нескольких независимых переменных (факторные планы), либо последовательное воздействие различных градаций одной независимой переменной (многоуровневые планы) .

Планы для многоуровневых экспериментов

Если в экспериментах используется одна независимая переменная, ситуация, когда изучаются только два её значения, считается скорее исключением, чем правилом. В большинстве однофакторных исследований используется три или более значений независимой переменной, -- такие планы часто называют однофакторными многоуровневыми . Такие планы могут использоваться как для исследования нелинейных эффектов (то есть случаев, когда независимая переменная принимает более двух значений), так и для проверки альтернативных гипотез . Преимущество таких планов -- в возможности определить вид функциональной зависимости между независимой и зависимой переменными. Недостаток, однако же, заключается в больших временных затратах, а также в необходимости привлечь больше участников.

Факторные планы

Факторные планы подразумевают использование более чем одной независимой переменной. Таких переменных, или факторов, может быть сколько угодно, однако обычно ограничиваются использованием двух, трёх, реже -- четырёх .

Факторные планы описываются с помощью системы нумерации, показывающей количество независимых переменных и количество значений (уровней), принимаемых каждой переменной. Например, факторный план 2х3 («два на три») имеет две независимые переменные (факторы), первая из которых принимает два значения («2»), а вторая -- три значения («3»); факторный план 3х4х5 имеет соответственно три независимые переменные, принимающие «3», «4» и «5» значений соответственно .

В эксперименте, проводимом по факторному плану 2х2, допустим, один фактор, A, может принимать два значения -- A 1 и A 2 , а другой фактор, B, может принимать значения B 1 и B 2 . В течение эксперимента согласно плану 2х2 должно быть проведено четыре опыта:

Порядок следования опытов может быть различным в зависимости от целесообразности, определяемой задачами и условиями каждого конкретного эксперимента.

Квазиэкспериментальные планы -- планы для экспериментов, в которых вследствие неполного контроля за переменными нельзя сделать выводы о существовании причинно-следственной связи . Понятие квазиэкспериментального плана было введено Кэмпбеллом и Стэнли в работе «Experimental and quasi-experimental designs for research» (Cambell, D. T. & Stanley, J. C., 1966). Это делалось с целью преодоления некоторых проблем, встававших перед психологами, которые желали провести исследование в менее строгой обстановке, чем лабораторная . Квазиэкспериментальные планы часто применяются в прикладной психологии.

Виды квазиэксперементальных планов:

1. Планы эксперимента для неиквивалентных групп

2. Планы дискретных временных серий.

1. Эксперимент по плану временных серий

2. План серий временных выборок

3. План серий эквивалентных воздействий

4. План с неиквивалентной контрольной группой

5. Сбалансированные планы.

Планы ex post facto. Исследования, в которых сбор и анализ данных производится после того, как событие уже свершилось, называемые исследованиями ex post facto , многие специалисты относят к квазиэкспериментальным . Такие исследования часто осуществляются в социологии, педагогике, клинической психологии и нейропсихологии. Суть исследования ex post facto состоит в том, что экспериментатор сам не воздействует на испытуемых: в качестве воздействия выступает некоторое реальное событие из их жизни.

В нейропсихологии, к примеру, долгое время (и даже сегодня) исследования основывались на парадигме локализационизма, которая выражается в подходе «локус -- функция» и утверждает, что поражения определённых структур позволяют выявить локализацию психических функций -- конкретный материальный субстрат, в котором они «находятся», в мозге [см. А. Р. Лурия, «Поражения мозга и мозговая локализация высших функций»]; подобные исследования можно отнести к исследованиям ex post facto .

При планировании исследования ex post facto имитируется схема строгого эксперимента с уравниванием или рандомизацией групп и тестированием после воздействия .

Планы с малым N также называют «планами с одним субъектом», так как индивидуально рассматривается поведение каждого испытуемого. Одной из главных причин использования экспериментов с малым N считается невозможность в некоторых случаях применить результаты, полученные из обобщений на больших группах людей, ни к одному из участников индивидуально (что, таким образом, приводит к нарушению индивидуальной валидности) .

Психолог Б. Ф. Скиннер считается самым известным защитником этого направления исследований: по его мнению, исследователь должен «изучать одну крысу на протяжении тысячи часов, <…> а не тысячу крыс по часу на каждую или сто крыс по десять часов на каждую» . Интроспективные исследования Эббингауза также можно отнести к экспериментам с малым N (только исследуемым им субъектом был он сам).

План с одним субъектом должен учитывать как минимум три условия:

1. Необходимо точно определить целевое поведение в терминах событий, которые легко зафиксировать.

2. Необходимо установить базовый уровень реакции.

3. Необходимо произвести воздействие на испытуемого и зафиксировать его поведение.

Корреляционное исследование -- исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи (корреляции) между несколькими (двумя или более) переменными. От квазиэкспериментального план такого исследования отличается тем, что в нём отсутствует управляемое воздействие на объект исследования .

В корреляционном исследовании учёный выдвигает гипотезу о наличии статистической связи между несколькими психическими свойствами индивида или между определёнными внешними уровнями и психическими состояниями, при этом предположения о причинной зависимости не обсуждаются . Испытуемые должны быть в эквивалентных неизменных условиях. В общем виде план такого исследования можно описать как PxO («испытуемые» x «измерения») .

Виды корреляционных исследований

· Сравнение двух групп

· Одномерное исследование

· Корреляционное исследование попарно эквивалентных групп

· Многомерное корреляционное исследование

· Структурное корреляционное исследование

· Лонгитюдное корреляционное исследование *

* Лонгитюдные исследования считаются промежуточным вариантом между квазиэкспериментом и корреляционным исследованием.

Эксперимент (психология)

Психологический эксперимент -- проводимый в специальных условиях опыт для получения новых научных знаний посредством целенаправленного вмешательства исследователя в жизнедеятельность испытуемого.

Различными авторами понятие «психологический эксперимент» трактуется неоднозначно, зачастую под экспериментом в психологии рассматривается комплекс разных самостоятельных эмпирических методов (собственно эксперимент , наблюдение, опрос, тестирование) . Однако традиционно в экспериментальной психологии эксперимент считается самостоятельным методом.

Основные этапы эксперимента

1. Этап - Подготовительный:

1.1 Опредилить тему исследования

Предварительное знакомство с объектом исследования

Определить цель и задания исследования

Уточнить объект

Определить и подобрать методы и методики исследования.

2. Этап - этап сбора исследовательских данных:

2.1 Проведение пилотажного исследования.

2.2 Непосредственное взаимодействие с объектом исследования

3. Этап - Заключительный:

3.1 Обработка полученых данных

3.2 Анализ полученых данных

3.3 Проверка гипотезы

4. Этап - Интерпритация:

4.1 Выводы.

2 )

Опросы - незаменимый прием получения информации о субъективном мире людей, их склонностях, мотивах деятельности, мнениях.

Опрос - почти универсальный метод. при соблюдении надлежащих предосторожностей позволяет получить не менее надежную информацию, чем при исследовании документов или наблюдении. Причем эта информация может быть о чем угодно. Даже о том, что нельзя увидеть или прочитать.

Впервые официальные опросы появились в Англии в конце XVIII века, а в начале XIX века в США. Во Франции и Германии первые опросы были проведены в 1848 году, Бельгии - 1868-1869 гг. И далее начали активно распространятся.

Искусство использования этого метода состоит в том, чтобы знать, о чем спрашивать, как спрашивать, какие задавать вопросы и, наконец, как убедиться в том, что можно верить, полученным ответам.

Для исследователя надо в первую очередь уяснить, что в опросе участвует не “средний респондент”, а живой, реальный человек одаренный сознанием и самосознанием, который воздействует на социолога так же как и социолог на него.

Респонденты не беспристрастные регистраторы своих знаний имнений, а живые люди, которым не чужды какие-то симпатии, предпочтения, опасения и т.п. Поэтому, воспринимая вопросы, они на одни из них не могут ответить из-за недостатка знаний, на другие - не хотят отвечать или отвечают неискренне.

Разновидности опросов

Существуют два больших класса опросных методов: интервью и анкетные опросы.

Интервью - проводимая по определенному плану беседа, предполагающая прямой контакт интервьюера с респондентом (опрашиваемом), причем запись ответов последнего ведется либо интервьюером (его ассистентом), либо механически (на пленку).

Имеется множество разновидностей интервью.

2) По технике проведения - делятся на свободные, нестандартизованные и формализованные (а также полустандартизованные) интервью.

Свободные - длительная беседа (несколько часов) без строгойдетализации вопросов, но по общей программе (“путеводитель интервью”). Такие интервью уместны на стадии разведки в формулятивном плане исследования.

Стандартизованные интервью предполагают, как и формализованное наблюдение, детальную разработку всей процедуры, включая общий план беседы, последовательность и конструкцию вопросов, варианты возможных ответов.

3) В зависимости от особенностей процедуры интервью может быть интенсивным (“клиническим” т.е. глубоким, длящимся иногда часами) и фокусированным на выявление достаточно узкого круга реакций опрашиваемого. Цель клинического интервью - получить информацию о внутренних мотивах, побуждениях, склонностях опрашиваемого, а фокусированного - извлечь информацию о реакциях субъекта на заданное воздействие. С его помощью изучают, например, в какой мере человек реагирует на отдельные компоненты информации (из массовой печати, лекции и т.п.). Причем текст информации предварительно обрабатывают контент-анализом. В фокусированном интервью стремятся определить, какие именно смысловые единицы анализа текста оказываются в центре внимания опрошенных, какие - на периферии, и что вовсе не осталось в памяти.

4) Так называемые ненаправленные интервью носят“терапевтический” характер. Инициатива течения беседы принадлежитздесь самому респонденту, интервьюер лишь помогает ему “излить душу”.

5) по способу организации интервью делятся на групповые и индивидуальные. Первые применяются относительно редко, это планируемая беседа, в процессе которой исследователь стремиться вызвать дискуссию в группе. методика проведения читательских конференций напоминает данную процедуру. Телефонные интервью используются для быстрого зондажа мнений.

Опрос по анкете

Этот метод предполагает жестко фиксированный порядок, содержание и форму вопросов, ясное указание способов ответа, причем они регистрируются опрашиваемым либо наедине с собой (заочный опрос), либо в присутствии анкетера (прямой опрос).

Анкетные опросы классифицируют прежде всего по содержанию и конструкции задаваемых вопросов. Различают открытые опросы, когда респонденты высказываются в свободной форме. В закрытом опросном листе все варианты ответов заранее предусмотрены. Полузакрытые анкеты комбинируют обе процедуры. Зондажный или экспресс-опрос применяется в обследованиях общественного мнения и содержит всего 3-4 пункта основной информации плюс несколько пунктов, связанных с демографическими и социальными характеристиками опрашиваемых. Такие анкеты напоминают листы всенародных референдумов. Опрос по почте отличают от анкетирования на месте: в первом случае ожидается возвращение опросного листа по заранее оплаченному почтовому отправлению, во втором - анкетер сам собирает заполненные листы.

Групповое анкетирование отличается от индивидуального. В первом случае анкетируют сразу до 30-40 человек: анкетер собирает опрашиваемых, инструктирует их и оставляет для заполнения анкет, во втором - он обращается индивидуально к каждому респонденту.

Организация “раздаточного” анкетирования, включая опросы по месту жительства, естественно, более трудоемка, чем, например, опросы через прессу, также широко используемые в нашей и зарубежной практике. Однако последние непредставительны в отношении многих групп населения, так что скорее могут быть отнесены к приемам изучения общественного мнения читателей данных изданий.

Наконец, при классификации анкет, используют такжемногочисленные критерии, связанные с темой опросов: событийные анкеты, анкеты на выяснение ценностных ориентаций, статистические анкеты (в переписях населения), хронометражи суточных бюджетов времени и т.д.

При проведении опросов не надо забывать, что с их помощью выявляются субъективные мнения и оценки, которые подвержены колебаниям, воздействиям условий опроса и других обстоятельств.

Чтобы минимизировать искажение данных, связанное с этими факторами, любую разновидность опросных методов следует проводить в сжатые сроки. Нельзя растягивать опрос на долгое время, так как к концу опроса могут измениться внешние обстоятельства, а информация о его проведении будет передаваться опрашиваемыми друг другу с какими-либо комментариями, и эти суждения станут влиять на характер ответов тех, кто позже попадет в состав респондентов.

Независимо от того, прибегаем ли мы к интервью или анкетному опросу, большинство проблем, связанных с надежностью информации, оказываются для них общими.

Для того, чтобы анкетный опрос был более эффективным, надо соблюдать ряд правил, которые помогают правильно задавать ход анкетирования и уменьшить количество ошибок при исследовании.

Вопросы обращенные к респондентам, не изолированы - они звенья одной цепи, и как звенья, каждый из них связан с предыдущим и последующим (эту взаимосвязь Л.С.Выгодский назвал “влияние смыслов”). Анкета - не механическая последовательность вопросов, которые могут размещаться в ней как угодно или как удобно исследователю, а особое целое. Она обладает собственными свойствами, не сводимыми к простой сумме свойств отдельных составляющих ее вопросов.

В самом начале задаются простые вопросы, а не по логике исследователя содержащейся в программе, чтобы не обрушивать на отвечающего серьезные вопросы сразу, а дать ему освоиться с анкетой и постепенно переходить от простого к более сложному (правило воронки).

Эффект излучения - когда все вопросы логически взаимосвязанны и логически сужают тему, у респондента возникает определенная установка, согласно которой он будет отвечать на них - такое влияние вопроса называют эффектом излучения или эффектом эха и проявляется оно в том, что предшествующий вопрос или вопросы направляют ход мыслей респондентов в определенное русло, создают некоторую мини-систему координат, в рамках которой формируется или выбирается вполне определенный ответ.

Иногда возникают проблемы связанные с последовательность вопросов. Расхождения в ответах на один и тот же вопрос не должны быть обусловлены разной их последовательностью.

Так, например, если низкооплачиваемому рабочему задать вопрос “Намереваетесь ли Вы в ближайшее время уволиться с данного предприятия?” после вопроса о заработной плате, вероятность получения утвердительного ответа повышается. А если тот же вопрос поставить после выяснения, скажем, перспектив роста з/платы, возрастает вероятность получить отрицательный ответ.

Факт сопряженности ответов на разные вопросы учитывается при составлении анкеты. Для этого, например, вводятся буферные вопросы.

Пока можно лишь предполагать, что при помощи анкеты, достигается большая изолированность ответов на каждый вопрос, чем при непосредственном общении с интервьюером. Опрашиваемому не надо заботиться о своем образе в глазах партнера по общению (конечно, при условии анонимности), как во время интервью. Поэтому, видимо, здесь характер сопряженности ответов выражен слабее. Однако это не доказано.

Общие и частные вопросы. Анкета начинается с наиболее частных вопросов и постепенно их конкретизирует (правило воронки). Это позволяет постепенно вводить респондента в ситуацию. Но общее решение не всегда предполагает конкретное, в то время как последнее сильно влияет на общее (люди охотнее обобщают частности, чем занимаются дедукцией).

Пример: Общие вопросы самооценки об интересе к политике и религии, поставленные до и после частных вопросов о политическом и религиозном поведении респондентов, набрали неравное количество “голосов”. Во втором случае респонденты заявили о своем интересе гораздо чаще. В то же время общие оценки экономической и энергетической ситуации оказались в весьма незначительной степени подверженными воздействию постановки частных вопросов о доходах и источниках энергии респондента до и после них. Это дает основание предполагать, что общие и частные вопросы влияют друг на друга неоднозначно. Распределение ответов на общие вопросы зависит от предшествующей постановки частного вопроса на ту же тему сильнее, чем наоборот. Кроме того эта зависимость обусловлена также и содержанием обсуждаемого явления.

Применение вопросов-фильтров

Назначение фильтров состоит в том, чтобы оказывать влияние на ответы последующих вопросов. Эти вопросы позволяют выделить группу людей, ответы которых оказываются основанными не только на общих представлениях, но и на личном опыте:

“Посещает ли Ваш ребенок детскую музыкальную школу?

Если да, кто его обычно сопровождает туда?

Кто любо из родителей

Бабушка, дедушка и т.п.”

Эти вопросы сберегают время тех к кому следующий за фильтром вопрос не адресован.

Использование фильтров приводит к пропускам ответов.

Вызываются эти пропуски не только сознательным переходом частиопрашиваемых к вопросам, на которые они могут ответить, минуя неотносящиеся к ним, но и некоторыми другими факторами. Так напримервыяснилось, что использование серии фильтрующих вопросов (“Если у Вас высшее образование, то...?”; “Если у Вас высшее гуманитарное образование, то...?”; “Если у Вас высшее гуманитарное образование и Вы проходили практику в средней школе, то...?”) хотя и является очень удобным для социолога способом расположения вопросов, чрезвычайно усложняет восприятие анкеты респондентами. Иногда это приводит к настолько существенному числу пропущенных ответов, что все исследование оказывается под угрозой.

Вопрос с преамбулой

Вопрос о фактах, как любой другой, может быть воспринят как оценочная характеристика респондента, поэтому целесообразно внекоторых случаях задавать его в такой форме, которая несколько ослабляет его оценочный характер. Например: “Одни люди ежедневно убирают квартиру, другие делают это от случая к случаю. Как чаще всего поступаете Вы?”

Вопросы таблицы

Вопросы таблицы очень удобны для исследователя. Это трудные вопросы при которых респонденту приходится прилагать ряд усилий для ответа на них.

В таких вопросах речь идет о вещах, ответить на которые можно лишь тогда, когда используются знания и умственные способности респондентов. После таких вопросов желательно переходить к более простым.

Такие вопросы не следует повторять часто, т.к. у респондентов возникает утомление, рассеивание внимания, возникает эффект излучения.

Так, например, в одном исследовании респондентам предлагался список одних и тех же тем. В первом случае требовалось оценить их действенность, во втором - оперативность, в третьем - полноту освещения проблем. Предъявление этого списка во второй, а тем более в третий вызвало у респондентов ощущение, что повторяется не только список, но и критерии оценивания. Многие участники опроса, взглянув на третью таблицу, говорили: “Я вам уже отвечал”, “Это уже было” и т.п., пропускали ее, оставляли без ответа.

Однообразие заполнения таблиц ведет к тому, что повышается опасность получить механические заполнения, бездумные ответы.

Избрав однажды для ответа оценку “3”, респондент может ее фиксировать на протяжении всей таблицы независимо от того, какова действительная оценка и даже независимо от содержания вопроса.

Проблема мо нотонности

С эффектом излучения связано в значительной мере и влияние единообразных вопросов на ответы респондентов. Как в случаи с таблицами, так и во многих других, особенно когда респондентам предлагается несколько вопросов, сформулированных по одной и той же синтаксической схеме, анкета оказывается монотонной. Это приводит к увеличению доли непродуманных ответов или их пропуску. Для того чтобы приодолеть монотонность, рекомендуются следующие приемы:

“разбавлять” таблицы и вопросы, а данные в одинаковой синтаксической форме, другими вопросами; варьировать категории для ответа (в первом случае попросить респондента выразить согласие или несогласие, во втором - оценить, в третьем - решить, верно или неверно то или иное утверждение, в четвертом сформулировать ответ самостоятельно и т.п.); шире использовать разнообразные функционально-психологические вопросы, “гасящие взаимовлияние ответов”; разнообразить оформление анкеты.

Функционально-психологические воп росы

Для того чтобы создать и поддерживать интерес к анкете, снимать возникающее напряжение, переводить респондента от одной темы к другой, в анкете применяются специальные вопросы, получившие название функционально-психологических.

Эти вопросы служат не столько для сбора сведений, сколько для обеспечения отношений общения между исследователем и респондентами.

Эти вопросы служат не только побуждением к ответам, они содержат разнообразную информацию: пояснения и оправдания высказываний социолога, обращенные к респондентам, некоторые комментарии, воспринимаемые как признаки более симметричного общения, более равноправного обмена информацией.

К функционально-психологическим вопросам относятся контактные вопросы и буферные вопросы.

Контактные вопросы

Любое общение начинается с фазы адаптации. Эта фаза предусматривает восприятие общения к респондентам, знакомство с целью исследования и инструкцией о заполнении анкеты.

Первый вопрос анкеты оказывается контактным. Можно рассчитывать, что по причине взаимосвязи всех вопросов анкеты, если человек ответит на первый вопрос, то может ответить и на все остальные.

Ряд треб ований к первому вопросу анкеты

1) Контактный вопрос должен быть очень простым. Здесь часто используются вопросы чисто событийного характера - например, стажа работы, района местожительства, привычки, заинтересованность в проблемах.

2) Контактный вопрос должен быть очень общим, т.е. касаться всех респондентов. Поэтому нежелательно начинать анкету с фильтра.

3) Контактный вопрос рекомендуется делать настолько широким, чтобы на него мог ответить любой респондент. Отвечая, человек начинает верить в свою компетентность, чувствовать себя уверенно. У него возникает желание развивать свои мысли дальше, высказываться полнее. Поэтому анкету лучше начинать с того, что принимается всеми, что наиболее понятно.

Вовсе не обязательно, чтобы контактные вопросы содержали искомую информацию. Главная их функция - в облегчении взаимодействия. Ответы на контактные вопросы вовсе не обязательно вовлекать в научный анализ в связи с содержательными проблемами. С другой стороны, в методическом плане эти ответы имеют большое значение: в зависимости от их содержания можно определить отношение опрашиваемых к опросу, его влияние на их добросовестность, искренность и т.п.

Буферные вопросы

Довольно редко анкета бывает посвящена какой-то одной теме. Но даже в рамках одной темы обсуждаются различные аспекты. Резкие и неожиданные переходы от одной темы к другой могут произвести на респондентов неблагоприятное впечатление.

Буферные вопросы предназначены для смягчения взаимовлияния вопросов в анкете. Во первых, как уже сказано они играют роль своего рода “мостиков” при переходе с темы на тему. Например, после обсуждения ряда производственных проблем дается такая формулировка:

“Свободное время - это не только время, необходимое нам для восстановления затраченных на работе сил. Прежде всего это возможность для всестороннего развития личности. Поэтому просим Вас ответить на ряд вопросов о занятиях помимо работы”.

С помощью буферного вопроса (в такой функции здесь выступил не собственно вопрос, а преамбула к нему) исследователь поясняет респондентам ход своих мыслей.

С помощью таких “буферов” исследователь не просто предлагает респондентам переключить свое внимание на другую тему, но и поясняет, зачем это нужно. Например после вопроса о досуге дается такая формулировка: “Большую часть своей жизни человек проводит на работе. Огорчения и радости, успехи и неудачи в труде небезразличны для нас. Поэтому неудивительно, что мы хотим поговорить с Вами о работе”.

Во вторых буферные вопросы предназначены для того, чтобы нейтрализовать эффект излучения. В таком случае в качестве буферных могут выступать любые содержательные вопросы, не связанные непосредственно с тем предметом, который обсуждается в вопросах, взаимовлияние которых предполагает социолог.

Завершая обсуждение значения функционально-психологических вопросов в конструкции анкеты, отметим: как и любые другие, их формулировки могут оказаться небезразличными для респондентов и, следовательно, влиять на содержание и наличие их ответов. Знание социологом, что тот или иной вопрос выступает как функционально- психологический, еще не обеспечивает того, что он исполнит свою роль так, как предполагается. Чтобы предположения социолога оправдались необходимо проводить специальные методические эксперименты в этой области.

Обстановка анкетного опроса

Очень большую роль играет то, как поставлена обстановка проведения анкетного опроса. Прежде всего надо дать понять респондентам, что все их ответы абсолютно анонимны. Это позволит получить более надежную информацию в ответах. Влияет на респондентов и присутствие посторонних лиц. Для создания более благоприятной атмосферы во время опроса, необходимо принять меры по присутствию людей непосредственно связанных с анкетой (исследователь, респонденты). Место проведения опроса тоже играет свою роль. Оно должно быть знакомо респонденту. Важно, чтобы он чувствовал себя свободно в таком месте. Помещение не должно быть слишком официальным (кабинет управляющего предприятие), или слишком неофициально (раздевалка). Многое зависит от того, о чем вопросы.

Если в анкете задаются вопросы о предприятии на котором проходит анкетирование, ответы скорее всего будут неискренни. Надо уделить внимание и времени проведения анкеты. Она не должна длиться слишком долго, чтобы не утомлять респондентов (у них есть и более важные дела).

Список источников литературы

1) Содержательное и формальное планирование экспер иментальных исследований

1. ^ Экспериментальная психология: учеб. -- М.: Проспект, 2005. С. 80--81.

2. ^ См. там же.

3. ^ См. там же. С. 82--83.

4. ^ Исследование в психологии: методы и планирование / Дж. Гудвин. -- СПб.: Питер, 2004. С. 248.

5. ^ Зароченцев К. Д., Худяков А. И. Экспериментальная психология. С. 82--83.

6. ^ Исследование в психологии: методы и планирование / Дж. Гудвин. С. 258--261.

7. ^ См. там же. С. 275.

8. ^ См. там же.

9. ^ См. там же. С. 353.

10. ^ Солсо Р. Л., Джонсон Х. Х., Бил М. К. Экспериментальная психология: практический курс. СПб.: прайм-ЕВРОЗНАК, 2001. С. 103.

11. ^ См. там же.

12. ^ Дружинин В. Н. Экспериментальная психология. СПб.: Питер, 2002. С. 138.

13. ^ Исследование в психологии: методы и планирование / Дж. Гудвин. С. 388--392.

14. ^ См. там же.

15. ^ Дружинин В. Н. Экспериментальная психология. С. 140.

16. ^ См. там же.

17. ^ См. там же. С. 142

18. Исследование в психологии: метода и планирование / Дж. Гудвин. -- 3-е изд. -- СПб.: Питер, 2004.

19. Солсо Р. Л., Джонсон Х. Х., Бил М. К. Экспериментальная психология: практический курс. СПб.: прайм-ЕВРОЗНАК, 2001.

20. Роберт Готтсданкер "Основы психологического эксперимента": Издательство Московского университета 1982

2) Общая характеристика опросных методов

1. Бутенко И.А. “Анкетный опрос как метод общения социолога с респондентом”, Москва, 1989 г.

2. Ноэль Э. “Массовые опросы. Введение в методику демоскопии”, М., 1987 год.

Подобные документы

    Классификация методов психологии. Основные методы - наблюдения и опроса, лабораторный и естественный (производственный). Виды наблюдения, преимущества и недостатки метода. Формы опросных методов. Особенности тестового исследования, основные виды тестов.

    контрольная работа , добавлен 22.02.2011

    Валидность и использование мысленных образцов эксперимента. Конструктная валидность и концептуальные репликации. Валидность эксперимента и выводов. Содержательное планирование и выбор типа эксперимента. Валидность как цель экспериментального контроля.

    реферат , добавлен 08.08.2010

    Понятие и общая логика психологического исследования, разработка концепции и его планирование. Определение переменных, признаков, параметров изучаемого явления, подбор методов и методик, определение объема выборки. Интерпретация и обобщение результатов.

    контрольная работа , добавлен 07.02.2011

    Понятие и виды эксперимента, его организация. Этические проблемы при его проведении. Использование теста для объективной оценки индивидуально-психологических различий. Сущность исследований человека в социальном контексте посредством качественных методов.

    реферат , добавлен 16.02.2011

    Рассмотрение алгоритма психологического исследования: постановка проблемы, выдвижение гипотезы, планирование, выбор методов (наблюдение, эксперимент, моделирование), сбор данных и их обработка, интерпретация результатов и их включение в систему знаний.

    контрольная работа , добавлен 20.05.2010

    Группы методов психологических исследований, их классификация. Сущность и основные задачи анкетирования, наблюдения, беседы. Особенности проведения естественного, лабораторного и моделирующего эксперимента. Анализ методов психологических исследований.

    курсовая работа , добавлен 05.03.2012

    Основные методы психологических исследований и их варианты, применяемые для сбора первичных данных. Специализированные методы психодиагностического обследования. Две основные разновидности эксперимента.

    доклад , добавлен 14.06.2007

    Выделение методов духовной, идеальной (научной) и метода материальной (практической) человеческой деятельности. История развития последовательности психологических исследований и их классификация. Специфика наблюдения, эксперимента и моделирования.

    реферат , добавлен 18.11.2010

    Сущность и этапы реализации психологического исследования, его структура, основные компоненты. Классификация методов психологического исследования, их отличительные признаки и условия выполнения. Разновидности и особенности психологического эксперимента.

    курсовая работа , добавлен 30.11.2009

    Характеристика клинической психологии как науки. Применение методов наблюдения и эксперимента для получения психологических фактов. Основные разновидности психологического эксперимента: естественный и лабораторный. Эксперимент Розенхана, его сущность.

4.7. Экспериментальные планы

Экспериментальный план – это тактика экспериментального исследования, воплощенная в конкретной системе операций планирования эксперимента. Основными критериями классификации планов являются:

Состав участников (индивид или группа);

Количество независимых переменных и их уровней;

Виды шкал представления независимых переменных;

Метод сбора экспериментальных данных;

Место и условия проведения эксперимента;

Особенности организации экспериментального воздействия и способа контроля.

Планы для групп испытуемых и для одного испытуемого. Все экспериментальные планы можно разделить по составу участников на планы для групп испытуемых и планы для одного испытуемого.

Эксперименты с группой испытуемых имеют следующие преимущества: возможность обобщения результатов эксперимента на популяцию; возможность использования схем межгрупповых сравнений; экономия времени; применение методов статистического анализа. К недостаткам данного типа экспериментальных планов можно отнести: влияние индивидуальных различий между людьми на результаты эксперимента; проблему репрезентативности экспериментальной выборки; проблему эквивалентности групп испытуемых.

Эксперименты с одним испытуемым – это частный случай «планов с маленьким N». Дж. Гудвин указывает на следующие причины использования таких планов: потребности в индивидуальной валидности, так как в экспериментах с большим N возникает проблема, когда обобщенные данные не характеризуют ни одного испытуемого. Эксперимент с одним испытуемым проводится также в уникальных случаях, когда в силу ряда причин невозможно привлечь много участников. В этих случаях целью эксперимента является анализ уникальных явлений и индивидуальных характеристик.

Эксперимент с маленьким N, по мнению Д. Мартина, имеет следующие преимущества: отсутствие сложных статистических подсчетов, легкость в интерпретации результатов, возможность изучения уникальных случаев, привлечение одного-двух участников, широкие возможности манипуляции независимыми переменными. Ему свойственны и некоторые недостатки, в частности сложность процедур контроля, затруднение при обобщении результатов; относительная неэкономичность по времени.

Рассмотрим планы для одного испытуемого.

Планирование временных серий. Основным показателем влияния независимой переменной на зависимую при реализации такого плана является изменение характера ответов испытуемого во времени. Простейшая стратегия: схема А – В. Испытуемый первоначально выполняет деятельность в условиях А, а затем в условиях В. Для контроля «эффекта плацебо» применяется схема: А – В – А. («Эффект плацебо» – это реакции испытуемых на «пустые» воздействия, соответствующие реакциям на реальные воздействия.) В данном случае испытуемый не должен заранее знать, какое из условий является «пустым», а какое реальным. Однако эти схемы не учитывают взаимодействия воздействий, поэтому при планировании временных серий, как правило, применяют схемы регулярного чередования (А – В – А – В), позиционного уравнивания (А – В – В – А) или случайного чередования. Применение более «длинных» временных серий увеличивает возможность обнаружения эффекта, но приводит к ряду негативных последствий – утомлению испытуемого, снижению контроля за другими дополнительными переменными и т. п.

План альтернативных воздействий является развитием плана временных серий. Его специфика заключается в том, что воздействия А и В рандомизированно распределяются во времени и предъявляются испытуемому раздельно. Затем сравниваются эффекты от каждого из воздействий.

Реверсивный план применяется для изучения двух альтернативных форм поведения. Первоначально регистрируется базовый уровень проявления обеих форм поведения. Затем предъявляется комплексное воздействие, состоящее из специфического компонента для первой формы поведения и дополнительного для второй. Через определенное время сочетание воздействий видоизменяют. Эффект двух комплексных воздействий оценивается.

План возрастания критериев часто используется в психологии обучения. Суть его состоит в том, что регистрируется изменение поведения испытуемого в ответ на прирост воздействия. При этом следующее воздействие предъявляется лишь после выхода испытуемого на заданный уровень критерия.

При проведении экспериментов с одним испытуемым следует учитывать, что основные артефакты практически неустранимы. Кроме того, в этом случае, как ни в каком другом, проявляется влияние установок экспериментатора и отношений, которые складываются между ним и испытуемым.

Р. Готтсданкер предлагает различать качественные и количественные экспериментальные планы . В качественных планах независимая переменная представлена в номинативной шкале, т. е. в эксперименте используются два или более качественно разных условия.

В количественных экспериментальных планах уровни независимой переменной представлены в интервальных, ранговых или пропорциональных шкалах, т. е. в эксперименте используются уровни выраженности того или иного условия.

Возможна ситуация, когда в факторном эксперименте одна переменная будет представлена в количественном, а другая – в качественном виде. В таком случае план будет комбинированным.

Внутригрупповые и межгрупповые экспериментальные планы. Т.В. Корнилова определяет два типа экспериментальных планов по критерию количества групп и условий проведения эксперимента: внутригрупповые и межгрупповые. К внутригрупповым относятся планы, в которых влияние вариантов независимой переменной и измерение экспериментального эффекта происходят в одной группе. В межгрупповых планах влияние вариантов независимой переменной осуществляется в разных экспериментальных группах.

Преимуществами внутригруппового плана являются: меньшее количество участников, устранение факторов индивидуальных отличий, уменьшение общего времени проведения эксперимента, возможность доказательства статистической значимости экспериментального эффекта. К недостаткам относятся неконстантность условий и проявление «эффекта последовательности».

Преимуществами межгруппового плана являются: отсутствие «эффекта последовательности», возможность получения большего количества данных, сокращение времени участия в эксперименте для каждого испытуемого, уменьшение эффекта выбывания участников эксперимента. Главным недостатком межгруппового плана является неэквивалентность групп.

Планы с одной независимой переменной и факторные планы. По критерию количества экспериментальных воздействий Д. Мартин предлагает различать планы с одной независимой переменной, факторные планы и планы с серией экспериментов. В планах с одной независимой переменной экспериментатор манипулирует одной независимой переменной, которая может иметь неограниченное количество вариантов проявления. В факторных планах (подробно о них см. с. 120) экспериментатор манипулирует двумя и более независимыми переменными, исследует все возможные варианты взаимодействия их разных уровней.

Планы с серией экспериментов проводятся для постепенного исключения конкурирующих гипотез. В конце серии экспериментатор приходит к верификации одной гипотезы.

Доэкспериментальные, квазиэкспериментальные планы и планы истинных экспериментов. Д. Кэмпбелл предложил разделить все экспериментальные планы для групп испытуемых на следующие группы: доэкспериментальные, квазиэкспериментальные и планы истинных экспериментов. В основе этого деления лежит близость реального эксперимента к идеальному. Чем меньше артефактов провоцирует тот или иной план и чем строже контроль дополнительных переменных, тем ближе эксперимент к идеальному. Доэкспериментальные планы менее всего учитывают требования, предъявляемые к идеальному эксперименту. В.Н. Дружинин указывает, что они могут служить лишь иллюстрацией, в практике научных исследований их следует по возможности избегать. Квазиэкспериментальные планы являются попыткой учета реалий жизни при проведении эмпирических исследований, они специально создаются с отступлением от схем истинных экспериментов. Исследователь должен осознавать источники артефактов – внешних дополнительных переменных, которые он не может контролировать. Квазиэкспериментальный план применяется тогда, когда применение лучшего плана невозможно.

Систематизированные признаки доэкспериментальных, квазиэкспериментальных планов и планов истинных экспериментов приводятся в нижеследующей таблице.

При описании экспериментальных планов будем пользоваться символизацией, предложенной Д. Кэмпбеллом: R – рандомизация; X – экспериментальное воздействие; O – тестирование.

К доэксперименталъным планам относятся: 1) исследование единичного случая; 2) план с предварительным и итоговым тестированием одной группы; 3) сравнение статистических групп.

При исследовании единичного случая однократно тестируется одна группа после экспериментального воздействия. Схематично этот план можно записать в виде:

Контроль внешних переменных и независимой переменной полностью отсутствует. В таком эксперименте нет никакого материала для сравнения. Результаты могут быть сопоставлены лишь с обыденными представлениями о реальности, научной информации они не несут.

План с предварительным и итоговым тестированием одной группы часто применяется в социологических, социально-психологических и педагогических исследованиях. Его можно записать в виде:

В этом плане отсутствует контрольная группа, поэтому нельзя утверждать, что изменения зависимой переменной (разница между O1 и O2), регистрируемые в ходе тестирования, вызваны именно изменением независимой переменной. Между начальным и итоговым тестированием могут произойти и другие «фоновые» события, воздействующие на испытуемых вместе с независимой переменной. Этот план не позволяет контролировать также эффект естественного развития и эффект тестирования.

Сравнение статистических групп будет точнее назвать планом для двух неэквивалентных групп с тестированием после воздействия. Он может быть записан в таком виде:

Этот план позволяет учитывать эффект тестирования, благодаря введению контрольной группы контролировать ряд внешних переменных. Однако с его помощью невозможно учесть эффект естественного развития, так как нет материала для сравнения состояния испытуемых на данный момент с их начальным состоянием (предварительное тестирование не проводилось). Для сравнения результатов контрольной и экспериментальной групп используют t-критерий Стьюдента. Однако следует учитывать, что различия в результатах тестирования могут быть обусловлены не экспериментальным воздействием, а различием в составе групп.

Квазиэкспериментальные планы являются своеобразным компромиссом между реальностью и строгими рамками истинных экспериментов. Существуют следующие типы квазиэкспериментальных планов в психологическом исследовании: 1) планы экспериментов для неэквивалентных групп; 2) планы с предварительным и итоговым тестированием различных рандомизированных групп; 3) планы дискретных временных серий.

План эксперимента для неэквивалентных групп направлен на установление причинно-следственной зависимости между переменными, однако в нем отсутствует процедура уравнивания групп (рандомизация). Этот план может быть представлен следующей схемой:

К проведению эксперимента в данном случае привлекаются две реальные группы. Обе группы тестируются. Затем одна группа подвергается экспериментальному воздействию, а другая – нет. Затем обе группы повторно тестируются. Результаты первого и второго тестирования обеих групп сопоставляют, для сравнения используют t-критерий Стьюдента и дисперсионный анализ. Различие O2 и O4 свидетельствует о естественном развитии и фоновом воздействии. Для выявления действия независимой переменной необходимо сравнивать 6(O1 O2) и 6(O3 O4), т. е. величины сдвигов показателей. Значимость различия приростов показателей будет свидетельствовать о влиянии независимой переменной на зависимую. Этот план аналогичен плану истинного эксперимента для двух групп с тестированием до и после воздействия (см. с. 118). Главным источником артефактов является различие в составе групп.

План с предварительным и итоговым тестированием различных рандомизированных групп отличается от плана истинного эксперимента тем, что предварительное тестирование проходит одна группа, а итоговое – эквивалентная группа, которая подверглась воздействию:

Главный недостаток этого квазиэкспериментального плана – невозможность контролировать эффект «фона» – влияние событий, происходящих наряду с экспериментальным воздействием в период между первым и вторым тестированием.

Планы дискретных временных серий подразделяются на несколько видов в зависимости от количества групп (одной или нескольких), а также в зависимости от количества экспериментальных воздействий (одиночного или серии воздействий).

План дискретных временных серий для одной группы испытуемых состоит в том, что первоначально определяется исходный уровень зависимой переменной на группе испытуемых с помощью серии последовательных замеров. Затем применяют экспериментальное воздействие и проводят серию аналогичных замеров. Сравнивают уровни зависимой переменной до и после воздействия. Схема этого плана:

Главный недостаток плана дискретных временных серий в том, что он не дает возможности отделить результат влияния независимой переменной от влияния фоновых событий, которые происходят в течение исследования.

Модификацией этого плана является квазиэксперимент по схеме временных серий, в котором воздействие перед замером чередуется с отсутствием воздействия перед замером. Его схема такова:

ХO1 – O2ХO3 – O4 ХO5

Чередование может быть регулярным или случайным. Этот вариант подходит лишь в том случае, когда эффект воздействия обратим. При обработке данных, полученных в эксперименте, серии разбивают на две последовательности и сравнивают результаты замеров, где было воздействие, с результатами замеров, где оно отсутствовало. Для сравнения данных используется t-критерий Стьюдента с числом степеней свободы n – 2, где n – число ситуаций одного типа.

Планы временных серий часто реализуются на практике. Однако при их применении нередко наблюдается так называемый «эффект Хотторна». Впервые его обнаружили американские ученые в 1939 г., когда проводили исследование на заводе Хотторна в Чикаго. Предполагалось, что изменение системы организации труда позволит повысить его производительность. Однако в ходе эксперимента любые изменения в организации труда приводили к повышению его производительности. В результате оказалось, что само по себе участие в эксперименте повысило мотивацию к труду. Испытуемые поняли, что ими лично интересуются, и стали работать продуктивнее. Чтобы контролировать этот эффект, должна использоваться контрольная группа.

Схема плана временных серий для двух неэквивалентных групп, из которых одна не получает воздействия, выглядит так:

O1O2O3O4O5O6O7O8O9O10

O1O2O3O4O5O6O7O8O9O10

Такой план позволяет контролировать эффект «фона». Обычно он используется исследователями при изучении реальных групп в образовательных учреждениях, клиниках, на производстве.

Еще один специфический план, который нередко используется в психологии, называют экспериментом ex-post-facto. Он часто применяется в социологии, педагогике, а также в нейропсихологии и клинической психологии. Стратегия применения этого плана состоит в следующем. Экспериментатор сам не воздействует на испытуемых. В качестве воздействия выступает некоторое реальное событие из их жизни. Экспериментальная группа состоит из «испытуемых», подвергшихся воздействию, а контрольная группа – из людей, не испытавших его. При этом группы по возможности уравниваются на момент своего состояния до воздействия. Затем проводится тестирование зависимой переменной у представителей экспериментальной и контрольной групп. Данные, полученные в результате тестирования, сопоставляются и делается вывод о влиянии воздействия на дальнейшее поведение испытуемых. Тем самым план ex-post-facto имитирует схему эксперимента для двух групп с их уравниванием и тестированием после воздействия. Его схема такова:

Если удается достичь эквивалентности групп, то этот план становится планом истинного эксперимента. Он реализуется во многих современных исследованиях. Например, при изучении посттравматического стресса, когда люди, перенесшие воздействия природной или техногенной катастрофы, или участники боевых действий тестируются на наличие посттравматического синдрома, их результаты сопоставляются с результатами контрольной группы, что позволяет выявить механизмы возникновения подобных реакций. В нейропсихологии травмы головного мозга, поражения определенных структур, рассматриваемые как «экспериментальное воздействие», предоставляют уникальную возможность для выявления локализации психических функций.

Планы истинных экспериментов для одной независимой переменной отличаются от других следующим:

1) использованием стратегий создания эквивалентных групп (рандомизация);

2) наличием как минимум одной экспериментальной и одной контрольной групп;

3) итоговым тестированием и сравнением результатов групп, получавших и не получавших воздействие.

Рассмотрим подробнее некоторые экспериментальные планы для одной независимой переменной.

План для двух рандомизированных групп с тестированием после воздействия. Его схема выглядит так:

Этот план применяют в том случае, если нет возможности или необходимости проводить предварительное тестирование. При равенстве экспериментальной и контрольной групп данный план является наилучшим, поскольку позволяет контролировать большинство источников артефактов. Отсутствие предварительного тестирования исключает как эффект взаимодействия процедуры тестирования и экспериментального задания, так и сам эффект тестирования. План позволяет контролировать влияние состава групп, стихийного выбывания, влияние фона и естественного развития, взаимодействие состава группы с другими факторами.

В рассмотренном примере использовался один уровень воздействия независимой переменной. Если же она имеет несколько уровней, то количество экспериментальных групп увеличивается до числа уровней независимой переменной.

План для двух рандомизированных групп с предварительным и итоговым тестированием. Схема плана выглядит следующим образом:

R O1 Х O2

Этот план применяется в том случае, если существуют сомнения в результатах рандомизации. Главный источник артефактов – взаимодействие тестирования и экспериментального воздействия. В реальности также приходится сталкиваться с эффектом неодновременности тестирования. Поэтому наилучшим считается проведение тестирования членов экспериментальной и контрольной групп в случайном порядке. Предъявление-непредъявление экспериментального воздействия также лучше проводить в случайном порядке. Д. Кэмпбелл отмечает необходимость контроля «внутригрупповых событий». Данный экспериментальный план хорошо контролирует эффект фона и эффект естественного развития.

При обработке данных обычно используются параметрические критерии t и F (для данных в интервальной шкале). Вычисляют три значения t: 1) между O1 и O2; 2) между O3 и O4; 3) между O2 и O4. Гипотезу о значимости влияния независимой переменной на зависимую можно принять в том случае, если выполняются два условия: 1) различия между O1 и O2 значимы, а между O3 и O4 незначимы и 2) различия между O2 и O4 значимы. Иногда удобнее сравнивать не абсолютные значения, а величины прироста показателей б(1 2) и б (3 4). Эти значения также сравниваются по t-критерию Стьюдента. В случае значимости различий принимается экспериментальная гипотеза о влиянии независимой переменной на зависимую.

План Соломона представляет собой объединение двух предыдущих планов. Для его реализации необходимы две экспериментальные (Э) и две контрольные (К) группы. Его схема выглядит так:

С помощью этого плана можно контролировать эффект взаимодействия предварительного тестирования и эффект экспериментального воздействия. Эффект экспериментального воздействия выявляется при сравнении показателей: O1 и O2; O2 и O4; O5 и O6; O5 и O3. Сравнение O6, O1 и O3 позволяет выявить влияние фактора естественного развития и фоновых воздействий на зависимую переменную.

Теперь рассмотрим план для одной независимой переменной и нескольких групп.

План для трех рандомизированных групп и трех уровней независимой переменной применяется в тех случаях, когда необходимо выявление количественных зависимостей между независимой и зависимой переменными. Его схема выглядит так:

При реализации этого плана каждой группе предъявляется лишь один уровень независимой переменной. При необходимости можно увеличить количество экспериментальных групп в соответствии с количеством уровней независимой переменной. Для обработки данных, полученных с помощью такого экспериментального плана, могут применяться все вышеперечисленные статистические методы.

Факторные экспериментальные планы применяются для проверки сложных гипотез о взаимосвязях между переменными. В факторном эксперименте проверяются, как правило, два типа гипотез: 1) гипотезы о раздельном влиянии каждой из независимых переменных; 2) гипотезы о взаимодействии переменных. Факторный план заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп при этом равно числу сочетаний.

Факторный план для двух независимых переменных и двух уровней (2 х 2). Это наиболее простой из факторных планов. Его схема выглядит так.



Данный план выявляет эффект воздействия двух независимых переменных на одну зависимую. Экспериментатор сочетает возможные переменные и уровни. Иногда используются четыре независимые рандомизированные экспериментальные группы. Для обработки результатов применяется дисперсионный анализ по Фишеру.

Существуют более сложные версии факторного плана: 3 х 2 и 3 х 3 и т. д. Дополнение каждого уровня независимой переменной увеличивает число экспериментальных групп.

«Латинский квадрат». Является упрощением полного плана для трех независимых переменных, имеющих два и более уровней. Принцип латинского квадрата состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым значительно сокращаются количество групп и экспериментальная выборка в целом.

Например, для трех независимых переменных (L, M, N) с тремя уровнями у каждой (1, 2, 3 и N(A, В, С)) план по методу «латинского квадрата» будет выглядеть так.

В этом случае уровень третьей независимой переменной (А, В, С) встречается в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных. Применение латинских букв А, В, С для обозначения уровней третьей переменной традиционно, поэтому метод и получил название «латинский квадрат».

«Греко-латинский квадрат». Этот план применяется в случае, если необходимо исследовать влияние четырех независимых переменных. Он строится на основе латинского квадрата для трех переменных, при этом к каждой латинской группе плана присоединяется греческая буква, обозначающая уровни четвертой переменной. Схема для плана с четырьмя независимыми переменными, каждая из которых имеет три уровня, будет выглядеть так:

Для обработки данных, полученных в плане «греко-латинский квадрат», применяется метод дисперсионного анализа по Фишеру.

Главная проблема, которую позволяют решить факторные планы, – определение взаимодействия двух и более переменных. Эту задачу невозможно решить, применяя несколько обычных экспериментов с одной независимой переменной. В факторном плане вместо попыток «очистить» экспериментальную ситуацию от дополнительных переменных (с угрозой для внешней валидности) экспериментатор приближает ее к реальности, вводя некоторые дополнительные переменные в разряд независимых. При этом анализ связей между изучаемыми признаками позволяет выявить скрытые структурные факторы, от которых зависят параметры измеряемой переменной.

Краткое описание

Факторным называется такой план, согласно которому одновременно изучается влияние на зависимую переменную двух или более факторов. Т. к. несколько факторов рассматриваются в рамках одного плана, то в добавление к возможности оценить их воздействие на зависимую переменную по отдельности (главные эффекты) появляется возможность измерить эффекты их совместного влияния на эту переменную (взаимодействия).
Дробные 2**(k-p) факторные планы, вероятно, наиболее часто используемые планы в промышленных экспериментах. Предмет рассмотрения любого 2**(k-p) дробного факторного эксперимента включает число исследуемых факторов, число опытов в эксперименте и наличие блоков опытов эксперимента. После этих основных вопросов следует также определить, позволяет ли число опытов найти план требуемого разрешения и степень смешивания для критического порядка взаимодействий, для данного разрешения.

Введение
1 Простые факторные планы
2 Простые сравнивающие эксперименты
Вывод
Список использованных источников

Содержимое работы - 1 файл

Критерий минимальной аберрации плана. Критерий минимальной аберрации плана является другим необязательным критерием, используемым при поиске 2**(k-p) плана. В некоторых отношениях этот критерий похож на критерий максимальной несмешанности. Формально план с минимальной аберрацией определяется как план с максимальным разрешением "с минимальным числом слов в определяющем взаимоотношении, которое имеет минимальную длину" (Fries & Hunter, 1984). Менее формально, действие критерия основано на выборе генераторов, которые дают наименьшее число пар смешанных взаимодействий критического порядка. Например, план разрешения IV с минимальной аберрацией имел бы минимальное число пар смешанных 2-факторных взаимодействий.

Для пояснения различия между критериями максимальной несмешанности и минимальной аберрации рассмотрим максимально несмешанный план 2**(9-4) и план 2**(9-4) с минимальной аберрацией, как в примере, данном Box, Hunter, и Hunter (1978). Если вы сравните эти два плана, вы увидите, что в максимально несмешанном плане 15 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями, в то время как в плане с минимальной аберрацией только 8 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями. План с минимальной аберрацией, однако, дает 18 пар смешанных взаимодействий, в то время как максимально несмешанный план дает 21 пару смешанных взаимодействий. Таким образом, эти критерии приводят к выделению генераторов, дающих различные "лучшие" планы.

К счастью, выбор между критерием максимальной несмешанности и критерием минимальной аберрации не вносит различия в выбранном плане (за исключением, возможно, переобозначения факторов), когда имеется 11 или меньше факторов, - единственное исключение составляет план 2**(9-4), описанный выше (смотрите Chen, Sun, & Wu, 1993). Для планов с более чем 11 факторами оба критерия приводят к весьма различным планам, и нет лучшего совета, как использовать оба критерия, а затем сравнить полученные планы и выбрать план, наиболее отвечающий вашим потребностям. Добавим, что максимизация числа полностью несмешанных эффектов часто имеет больший смысл, чем минимизация числа пар смешанных эффектов.

2 Простые сравнивающие эксперименты

Эксперименты представляют собой запланированное введение фактора в ситуацию с целью установить его связь с изменением в данной ситуации. Вводимый фактор обычно называют вмешательством, воздействием и ли независимой переменной; тогда наблюдаемое изменение будет мерой зависимой переменной. Эксперименты включают подробное описание того, сколько (и каких) групп испытуемых должно быть создано и каким образом предполагается исключить наиболее правдоподобные альтернативные объяснения. Главные задачи сравнивающих экспериментов - связать вмешательство с эффектом и исключить все другие объяснения наблюдаемого изменения. Простейшие эксперименты заключаются в воздействии, оказываемом на одного испытуемого или группу испытуемых, вместе с наблюдениями до и после этого воздействия, проводимыми с целью установления изменение в их состоянии. Эксперименты используются не только для установления связи переменных с их эффектами, но и для исключения альтернативных объяснений, в которых, если употреблять терминологию теории планирования эксперимента, переменные смешиваются. Только когда мы разделяем эти эффекты, мы можем приписать наблюдаемое изменение определенному воздействию, например, цвету фона дисплея; в противном случае мы вынуждены прибегать к смешанному альтернативному объяснению, например, приписывая то же самое изменение влиянию практики. На языке теории планирования эксперимента мы бы сказали, что контролируем смешивание переменных. Как можно этого добиться? Существует четыре общепринятых метода контроля: а) исключение смешиваемого фактора; б) измерение эффекта смешиваемого фактора и введение соответствующей поправки; в) сравнение эквивалентных ситуаций, одна из которых подвергается влиянию смешиваемой переменной и экспериментальному воздействию, тогда как на другую влияет только смешиваемая переменная ; г) варьирование эксперимента воздействия при поддержании смешиваемой переменной на одном уровне, чтобы посмотреть, соответствует ли изменение эффекта схеме изменения воздействия. Несмотря на то, что существуют и др. методы контроля, чаще всего используются именно эти четыре. Базисная логика экспериментальных планов. 1. Стабилизировать ситуацию, ввести воздействие и наблюдать изменение. 2. Если ситуация не может быть стабилизирована и изменяется, то проследить характер изменений, ввести воздействие и установить, привело ли оно к каким-либо нарушениям в характере изменений. 3. Стабилизировать две (или более) эквивалентные ситуации; выбрать одну из них и поддерживать ее постоянство на одном уровне с оставшейся (или оставшимися), за исключением эксперимента воздействия; ввести экспериментальное воздействие в другую ситуацию (или его варианты в оставшиеся ситуации) и отметить различия. 4. Соотнести схему подачи/прекращения эксперимента воздействия с характером наблюдаемого изменения; если можно измерить степень воздействия или силу вмешательства, то соотнести силу или интенсивность вмешательств а с таким релевантным аспектом как величина или предел изменения. (Этот принцип работает только в том случае, если зависимая переменная возвращается в прежнее состояние при прекращении вмешательства, но не действует в таких ситуациях как ситуация научения, эффекты которого отличаются устойчивостью .) Случайное распределение испытуемых на эксперименте и контрольную группы гарантирует, что эти группы, в среднем, "совместно уравниваются по каждому условию", включительно и предположительно связанные с изучаемым явлением , и непредвиденные, даже иррелевантные условия, такие как число кожных пор и длина ногтей. Действительно, Кэмпбелл и Стэнли считают случайное распределение испытуемых по группам довольно важным вследствие того, что оно обеспечивает защиту от "скрытых" переменных, и называют планы, в которых оно не используется, "квазиэкспериментальными", в отличие от использующих его "подлинно экспериментальных планов". Такие факторы как уровень образования, способность к научению, мотивация и социоэкономический статус , часто оказываются альтернативными объяснениями, которые хотели бы исключить посредством обеспечения эквивалентности групп. Это достигается путем стратификации, формирования блоков или попарного уравнивания на основе измерения этих переменных с последующим случайным распределением испытуемых по экспериментам и контрольным группам. Логика сохранения общности всех условий за исключением одного используется и в более сложных планах, таких, например, как факторные. Такие планы позволяют одновременно проверять эффект нескольких переменных, но в них всегда есть одна или более групп, которые отличаются от другой или других групп испытуемых только одним условием или переменной. Милль отмечал, что когда одно явление изменяется по мере изменения другого, то либо одно из них является причиной, а другое следствием (или наоборот), либо оба они связаны с общей причиной. Этой логике следуют такие планы как план с разрывом регрессии (служащим признаком экспериментального эффекта) и план типа АБА/АБАБ, а также корреляционные исследования, цель которых - выяснить насколько тесно величина одной переменной связана с величиной другой переменной. Сделать вывод о причинности на основе корреляции весьма затруднительно, так как ковариация может быть обусловлена действием третьей переменной.

Вывод

Экспериментальные методы широко используются как в науке, так и в промышленности, однако нередко с весьма различными целями. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную.

В условиях промышленного эксперимента основная цель обычно заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на производственный процесс с помощью наименьшего числа дорогостоящих наблюдений. Если в научных приложениях методы дисперсионного анализа используются для выяснения реальной природы взаимодействий, проявляющейся во взаимодействии факторов высших порядков, то в промышленности учет эффектов взаимодействия факторов часто считается излишним в ходе выявления существенно влияющих факторов.

Основные принципы планирования эксперимента, обеспечивающие получение максимума информации при минимуме опытов. Отказ от полного перебора возможных входных состояний. Выбор числа уровней варьирования по каждому фактору на основании вида аппроксимации функции отклика. Принцип последовательного планирования, предусматривающий получение простейшей математической модели на основании небольшого числа опытов и, если полученная модель не удовлетворяет исследователя, постепенное усложнение математической модели на основе проведения новых (дополнительных) опытов до тех пор, пока не будет получена модель, которую исследователь признает достаточно хорошей.

Список использованных источников

  1. Encyclopedia of Computer Science. 4th edition. 2000. Grove"s Dictionaries N.Y.
  2. Белоцерковский О.М. 1994. Численное моделирование в механике сплошных сред. М.: Наука
  3. Петров А. А. 1996. Экономика. Модели. Вычислительный эксперимент. М.: Наука
  4. Самарский А.А., Михайлов А.П.. 1997. Математическое моделирование. Идеи. Методы. Примеры. - М., Наука.
  5. Буянов Б. Б., Легович Ю. С., Лубков Н. В., Поляк Г.Л. 1996. Построение систем подготовки управляющих решений с использованием имитационного моделирования Приборы и системы управления. 12: 36 - 40.
  6. Бахур А.Б. 2000. Системные идеи в современной инженерной практике. М.: Пров-пресс.
  7. Попов Ю. П., Самарский А.А. 1983. Вычислительный эксперимент. М. Знание.
  8. Трахтенгерц Э. Л. 1998. Компьютерная поддержка принятия решений. М., Синтэг.
  9. Мандель А.С. 1996. Экспертно-статистические системы в задачах управления и обработки информации. Часть I. Приборы и системы управления. 12: 34-36.